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Introduction

At the end of this thesis, we will know the fundamental group of GLn(C), π1(GLn(C)) ∼= Z. However, the
path we take to obtain this result is not the classical one.

Throughout this thesis, we will be studying vector bundles, an object in algebraic and differential geom-
etry. Two of the simplest vector bundles are given by the Möbius band and the annulus. One is the twisted
product of a line and a circle, the other the actual product of the two. More generally, vector bundles consist
of a base space, in the particular case of the Möbius band and the annulus this is the circle, and a vector space
attached to each point of the base space called the fiber, which in our particular case is the line. Intuitively
it is clear the Möbius band and the annulus are two different objects, and part of this thesis is dedicated to
developing tools to distinguish the two. These tools will not only be applicable to the Möbius band and the
annulus, but to other vector bundles as well.

Our main interest will be vector bundles which have the n-dimensional sphere as their base space. The
main question will be: “can we classify them?” To answer this question we will need and develop tools from
algebraic topology, with the main result being Theorem 2.2.5. This theorem states the vector bundles over
the n-sphere Sn can be classified using homotopy classes of maps f : Sn−1 → GLn(K).

Lastly, we will restrict our attention to vector bundles over the complex projective line CP1. In 1957
Grothendieck showed one can classify holomorphic vector bundles over CP1 by ordered sets of integers
[Gro57], and we will give a similar result for topological vector bundles using techniques similar to [HM82].
We will be using the identification CP1 ∼= S2 to be able to transfer our tools from vector bundles over
spheres to vector bundles over CP1, and this in turn will lead us to Theorem 3.4.4 and the identification
π1(GLn(C)) ∼= Z.

This thesis is aimed at bachelor students that have taken introductory courses in algebraic topology, lin-
ear algebra and complex analysis. Most of this thesis is based on the first chapter of [Hat03], with much
elaboration provided, and by the end one should have a foundation to study K-Theory as found in the second
chapter of [Hat03].

I wish to thank Jack Davies for taking on my request of supervising my thesis, even though he had no
obligation to do so. He has been a big help in providing interesting subjects and adequate resources, and has
been very generous with his time and knowledge. I also wish to thank Lennart Meier for providing valuable
input and feedback and providing the opportunity to work with Jack as my supervisor.
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Conventions

� The natural numbers start at zero; N = {0, 1, 2, 3, . . . }.

� When writing K, we mean either the field R or C.

� With I we mean the closed unit interval [0, 1].

� All maps and functions in this thesis are assumed to be continuous.

� All spaces discussed in this thesis are assumed to be Hausdorff.

� When writing X ∼= Y we mean the objects X and Y are isomorphic (homeomorphic, isomorphic as
vector bundles, isomorphic as groups, etc.).

� When writing f ' g or X ' Y we mean two functions f and g are homotopic or two spaces X and Y
are homotopy equivalent.
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1 Vector Bundles

In this section we will be discussing the notion of a vector bundle, some examples, how to endow vector
bundles with additional structure and how to construct new vector bundles out of existing ones. We will
mainly be following the discussion in [Hat03], making a few sidesteps and elaborations as found in [MS75]
and [Zin10].

1.1 Definitions and examples

Let us start with a motivating example: the tangent space of a manifold, in particular S2. When thinking
of the tangent space of S2, we usually have the notion of attaching an individual copy of the vector space
R2 to each individual point of x ∈ S2, parallel to the surface of S2 at that point. Here we view S2 ⊂ R3

as embedded inside R3 as all points with unit distance from the origin. If we consider all the vector spaces
attached to S2, this becomes a family of vector spaces parameterized by points x ∈ S2. This family is
parameterized in a continuous way, and can be endowed with a topology. If we do so, we get the topological
space TS2, which is the disjoint union of all vector spaces corresponding to individual points on S2, together
with a topology.

One can ask if TS2 is just S2 × R2 in disguise, since we are attaching a copy of R2 to every point of
S2. To be more precise, does there exist a homeomorphism h : TS2 → S2 × R2 taking each vector space in
TS2 to the corresponding vector space {x} × R2 by linear isomorphism? In other words, does there exist
a map from TS2 to S2 × R2 respecting the global topological structure and the local linear structure? If
there would exist such a map, we would be able to find a non-vanishing vector field on S2, by taking a fixed
non-zero v ∈ R2 and considering the vector field {h−1(x, v)}x∈S2 . This is known to be impossible by the
Hairy Ball Theorem ([Hat03], §2.2), which implies TS2 is distinguishable from S2 × R2 globally.

We do not need to restrict ourselves to the sphere, and we could ask this question for any (real) mani-
fold M . We know the manifold locally looks like an open U ⊆ Rn, and if we consider the tangent space this
locally looks like U ×Rn. We can then again ask the question, does the tangent space TM look like M ×Rn
globally? We do not even need to restrict ourselves to the real case and can even look at the complex case.
As it turns out, manifolds with this property, which is called being parallelizable, carry other properties as
well, such as being orientable. Hence, knowing something about the tangent space of a manifold also tells
you something about other aspects of the manifold as well.

Upon further abstraction, we arrive at the notion of a vector bundle.

Definition 1.1.1 (Vector bundle). A vector bundle over a base space B is a map p : E → B with a (real or
complex) vector space structure on p−1(b) for every b ∈ B, satisfying the following local triviality condition:
there exists an open cover {Uα}α∈A of B such that for each Uα there exists a homeomorphism hα : p−1(Uα)→
Uα ×Kn restricting to a linear isomorphism in each fiber p−1(b).

The space B is called the base space, where E is called the total space and the homeomorphisms hα are called
local trivializations. If the field K = R we speak of real vector bundle and analogously if K = C we call this a
complex vector bundle. Often times a vector bundle p : E → B is abbreviated to a vector bundle E, leaving
the rest implicit.

Note that the dimension of the vector spaces p−1(b) need not be constant, although the local trivializa-
tions do force the dimension to be locally constant. When the dimension dim(p−1(b)) = n for all b ∈ B, we
speak of a rank-n vector bundle.

Intuitively, a vector bundle can be thought of as attaching a vector space to every point b ∈ B of a base
space in a continuous way. The local trivializations allow us to locally examine the vector bundle as though
it was simply Uα ×Kn, but globally the structure can be exotic.

Next we will discuss some examples of vector bundles, starting with:
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Example 1.1.2. The trivial bundle given by E = B ×Kn, with p : B ×Kn → B, (b, v) 7→ b.

Example 1.1.3. The tangent bundle TS2, with projection map p : TS2 → S2, (x, v) 7→ x

Example 1.1.4. More generally, the tangent bundle TM of a differentiable manifold M , where p : TM →M
projects each element of TM to the corresponding point in M .

Example 1.1.5. The Möbius bundle, taking S1 as base space and letting E be the quotient (I×R)/(0, v) ∼
(1,−v) with projection map p : E → S1, (x, v) 7→ e2πix.

Example 1.1.6. The tautological line bundle over the real projective space RPn, with as total space E =
{(l, v) ∈ RPn × Rn+1 | v ∈ l} the space of all pairs (l, v) such that v lies in the line l, and as projection map
p : E → RPn, (l, v) 7→ l.

Since we now have a sense of what a vector bundle is, we want to know what maps between these objects
are. We would like the maps to be compatible with the topological and linear structure on the vector bundle.
This gives rise to the following definition.

Definition 1.1.7 (Morphism of vector bundles). Given two vector bundles p1 : E1 → B1 and p2 : E2 → B2

a morphism from E1 to E2 between these vector bundles is a pair of continuous maps f : E1 → E2 and
g : B1 → B2 such that g ◦ p1 = p2 ◦ f and that for every b ∈ B1, the restriction f : p−11 (b) → p−12 (g(b)) is a
linear map.

Essentially, we want two maps f and g such that the following diagram commutes and f restricts to a linear
map in each fiber.

E1 E2

B1 B2

f

p1 p2

g

If we take a closer look at the diagram, it seems that once we have the function f , the function g is forced.
This is the case, as will be discussed later in Section 1.2.

Similarly we can define an isomorphism of vector bundles to be a morphism of vector bundles with an
inverse. This implies the base spaces and the total spaces are homeomorphic to each other and the linear
structure of the vector bundle is preserved. Due to all structure being preserved, isomorphic vector bundles
are often viewed the same, and we write E1

∼= E2. If there exists an isomorphism between a vector bundle
p1 : E → B and the n-dimensional trivial bundle p2 : B × Kn → B for some n ∈ N, the bundle E is said to
be trivializable or is called the trivial bundle.

Given a base space B, one often views vector bundles up to isomorphism. Since being isomorphic is an
equivalence relation, we can consider the set of vector bundles up to isomorphism as well, defined as

VectK(B) := {Vector bundles over B}/ ∼= .

We can also consider vector bundles with a fixed dimension n up to isomorphism, resulting in VectnK(B).

An example of a morphism between vector bundles is an embedding.

Example 1.1.8. Consider the Möbius bundle p : E = (I × R)/(0, v) ∼ (1,−v)→ S1, then we can embed it
into the vector bundle R2 × R2 by the following diagram:

E R2 × R2

S1 R2

f

p1 p2

g
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where f is given by

f : (I × R)/(0, v) ∼ (1,−v)→ R2 × R2,

(x, v) 7→
(
(cos(2πx), sin(2πx)), v(cos(πx), sin(πx))

)
,

and g being forced by f to be

g : S1 → R2,

x 7→ (cos(2πx), sin(2πx)).

To check this is indeed a morphism we must check that f is continuous and restricts to a linear map in
each fiber. The continuity of f follows from the fact that f is a composition of continuous functions and the
periodicity of the sine and cosine functions. To check the linear property, fix x ∈ S1, then f restricts to a
map

f |p−1
1 (x) : p−11 (x)→ {(cos(2πx), sin(2πx))} × R2

v 7→ v(cos(πx), sin(πx))

which is linear on its image spanned by the vector (cos(πx), sin(πx)) ∈ R2.

Up until here our point of view has been to attach a vector space to each point of a base space B, and then
giving an open cover {Uα}α∈A of B such that local trivializations hα : p−1(Uα) → Uα × Kn exist. We can
also reverse the reasoning and start with an open cover {Uα}α∈A of B, and then patch together different
Uα×Kn to form a total space E. The advantage of this point of view is that we only need to know the open
cover, and how to glue them together in a consistent manner. Considering this, we construct a vector bundle
as follows:

Lemma 1.1.9. Given a base space B, an open cover {Uα}α∈A of B and a family functions {gαβ : Uα∩Uβ →
GLn(K)} satisfying the following conditions

1. gαα = Id on Uα,

2. gαβgβα = Id on Uα ∩ Uβ,

3. gαβgβγgγα = Id on Uα ∩ Uβ ∩ Uγ .

where the multiplication is pointwise matrix multiplication in GLn(K), then the space

E =

( ⊔
α∈A
{α} × Uα ×Kn

)/
∼

with equivalence relation ∼ given by

(β, b, v) ∼ (α, b, gαβ(b)v)

for all α, β ∈ A, b ∈ Uα ∩ Uβ , v ∈ Kn

with projection map p : E → B, (α, b, v) 7→ b is a vector bundle.

Proof. Let us begin by checking that ∼ is indeed an equivalence relation. The relation is reflexive since

(α, b, v) ∼ (α, b, gαα(b)v) = (α, b, Id v) = (α, b, v).

It is also symmetric since if (β, b, v) ∼ (α, b, gαβ(b)v) then it follows

(α, b, gαβ(b)v) ∼ (β, b, gβα(b)gαβ(b)v) = (β, b, Id v) = (β, b, v) .

Finally, for transitivity, if

(γ, b, v) ∼ (β, b, gβγ(b)v) and (β, b, gβγ(b)v) ∼ (α, b, gαβ(b)gβγ(b)v),
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then
(α, b, gαβ(b)gβγ(b)v) ∼ (γ, b, gγα(b)gαβ(b)gβγ(b)v) = (γ, b, Id v) = (γ, b, v).

For E to be a vector bundle, we must check that p is continuous, p−1(b) has a vector space structure for every
b ∈ B and that the local triviality condition is satisfied. First, let W ⊆ B be open. Then p−1(W ) is open in
E as well by the properties of the product and quotient topology, which makes p continuous. Second, given
b ∈ B, we can find an open Uα containing b. Then p−1(b) ⊆ p−1(Uα) ∼= {α} × Uα × Kn and by this we see
p−1(b) ∼= {α}×{p}×Kn which endows it with a vector space structure. This structure is independent of the
choice of open Uα, since if Uβ is another open, gαβ restricts to a linear isomorphism between these two vector
space structures. Third, the local trivializations are precisely p−1(Uα) ∼= {α}×Uα×Kn by construction.

The family of functions {gαβ : Uα ∩ Uβ → GLn(K)} are often called gluing functions and the conditions
imposed on them is te ensure the gluing functions are compatible with each other.

The next natural question to ask is given a vector bundle E1, can we find gluing functions such that the
vector bundle E2 constructed with these functions in the manner of Lemma 1.1.9 is isomorphic to E1? The
answer is yes, and the key observation is the following. Consider a vector bundle E and local trivializations
hα : p−1(Uα)→ Uα×Kn. Take a point b ∈ Uα∩Uβ , then the composition hαβ := hα◦h−1β : {b}×Kn → {b}×Kn
is the composition of linear isomorphisms and hence corresponds to a unique element in GLn(K). Following
this line of reasoning, we find an element in GLn(K) for every b ∈ Uα ∩ Uβ and we can define a function

gαβ : Uα ∩ Uβ → GLn(K),

such that hαβ(b, v) = (b, gαβ(b)v). The function gαβ will be continuous by continuity of hαβ . We also see the
functions gαβ satisfy the desired properties stated in Lemma 1.1.9, which can be checked by examining the
corresponding functions hαβ = hα ◦ h−1β . Motivated by the idea of viewing a vector bundle in terms of its
gluing functions we state the following result:

Proposition 1.1.10. Given a vector bundle p1 : E1 → B with local trivializations h1α : p−11 (Uα)→ Uα×Kn,
then the vector bundle E2 constructed using the gluing functions g2αβ induced by the compositions h1α ◦ h−11β

is isomorphic to E1.

Proof. To prove this statement, we must ensure we can find a homeomorphism f : E1 → E2 restricting to
linear isomorphism in each fiber. This function f is given by

f : E1 → E2

(b, v) 7→ [α, hα(b, v)],

where α is chosen such that b ∈ Uα. To see f is well-defined, consider b ∈ Uα ∩ Uβ , then [β, hβ(b, v)] =
[α, hαβhβ(b, v)] = [α, hα(b, v)]. We also need to check f is a homeomorphism. To check f is continuous,
consider the composition

Uα ×Kn
h−1
2α−−→ p−12 (Uα)

f−→ p−11 (Uα)
h2α−−→ Uα ×Kn

which is the identity and hence continuous. Since hiα are homeomorphisms, it follows f must be continuous.
We construct an inverse in the only way possible, namely

f−1 : E2 → E1

[α, b, v] 7→ (b, h−1α (v))

By a similar check as before, we see f−1 is well-defined and continuous. The last thing to check is the
functions restrict to linear isomorphism on each fiber. Fix b ∈ B, then

f |p−1(b) : (b, v) 7→ [α, hα(b, v)] if b ∈ Uα
is a linear isomorphism since hα restricts to a linear isomorphism on p−1(b).

This proposition shows it does not matter if we view vector bundles as attaching a vector space to each point
of a base space or as a patching of Uα × Kn, and it shows explicitly how to move between the two points
of view. This will prove to be helpful, as both perspectives provide us with interesting examples and proof
techniques.
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1.2 Sections

Now that we have a bit of understanding of vector bundles, it would be nice to develop some tools to better
handle these objects. The first of such tools will be a section, defined as follows:

Definition 1.2.1 (Section). A section of a vector bundle p : E → B is a continuous map s : B → E sending
each point b ∈ B to a vector s(b) ∈ p−1(b).

An alternative way of phrasing the condition s(b) ∈ p−1(b) is to say p ◦ s = Id. As an example, every section
of the tangent space of a manifold gives a vector field on the manifold.

Every vector bundle admits one canonical section, the zero section, which is defined as s : B → E, b 7→ (b, 0).
It is customary to identify the base space B with the zero section, since s and p restricted to the zero section
define a homeomorphism between the two. This also gives some insight as to why, when considering mor-
phisms of vector bundles, the map f : E1 → E2 determines the map g : B1 → B2. The map g can be seen as
f restricted to the zero section.

Sections can be used to distinguish vector bundles, as can be seen in the following examples:

Example 1.2.2. We want to show the Möbius bundle is not isomorphic to the trivial bundle. Looking at
the complement of the zero section of both bundles, the complement of the zero section of the Möbius bundle
is connected, while this is not true for the trivial bundle, and hence they can not be isomorphic since any
isomorphism is also a homeomorphism.

Example 1.2.3. Consider the tautological line bundle

p1 : E = {(l, v) ∈ RPn × Rn+1 | v ∈ l} → RPn,

for n ≥ 1. We wish to distinguish it from the one dimensional trivial bundle p2 : RPn × R → RPn. Both
bundles are one-dimensional bundles over the same base space, but the trivial bundle admits a section which
is nowhere zero, while the tautological line bundle does not. To see the tautological line bundle does not
admit a nowhere zero section, let

s : RPn → E

x 7→ (x, s̃(x))

be such a section. Considering the quotient map q : Sn → RPn, we can use q to define a function

t : Sn → RPn → E

x 7→ (q(x), s̃(q(x))).

The function t is the composition of continuous functions and hence continuous. In each fiber p−11 (b), the
point (q(x), s̃(q(x))) can be written as (q(x), t̃(x)x) since the fiber p−11 (b) consists of scalar multiples of
q(x). The induced function t̃ is continuous by continuity of t. The function t̃ : Sn → R has the property
t̃(−x) = −t̃(x). This can be seen by noting t(x) = t(−x) and considering

t(x) = (q(x), t̃(x)x)

t(−x) = (q(−x), t̃(−x)(−x)) = (q(x),−t̃(−x)x),

and the property follows by comparing the last components. If we fix x0 ∈ Sn, then by Sn being path-
connected for n ≥ 1 we can find a path γ : I → Sn with γ(0) = x0 and γ(1) = −x0. Composing the path
with t̃, we get a function

t̃ ◦ γ : I → E,

with −t̃ ◦ γ(0) = −t̃(x0) = t̃(−x0) = t̃ ◦ γ(1). By the intermediate value theorem, there must exist a c ∈ I
such that t̃ ◦ γ(c) = 0. If we set γ(c) = x1 and compute t ◦ γ(c) = t(x1), we see

t(x1) = (q(x1), s̃(q(x1))) = (q(x1), t̃(x1)x1) = (q(x1), t̃(γ(c))x1) = (q(x1), 0)

which in turn implies the section s hits zero. This implies the vector bundles can not be isomorphic, since
if they were we could use the isomorphism to send the nowhere vanishing section of the trivial bundle to a
nowhere vanishing section of the tautological line bundle.
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Further exploring the use of sections, we examine an n-dimensional vector bundle p : E → B with n linearly
independent sections. This means there exist n sections s1, . . . , sn such that the vectors s1(b), . . . , sn(b) are
linearly independent in each fiber p−1(b). We claim any vector bundle admitting such sections is isomorphic
to the trivial bundle. To see this, consider the map

f : B ×Kn → E

(b, v1, v2, . . . , vn) 7→

(
b,

n∑
i=1

visi(b)

)
,

which is a continuous bijection and a linear isomorphism on each fiber. It does not exactly meet the require-
ments of a vector bundle isomorphism since we do not know anything about its inverse, but f in fact is an
isomorphism of vector bundles by the following result:

Lemma 1.2.4. A continuous map f : E1 → E2 between vector bundles over the same base space B is an
isomorphism if and only if p2 ◦ f = p1, and for every b ∈ B the induced map p−11 (b) → p−12 (b) is linear
isomorphism.

Proof. Clearly if f is an isomorphism of vector bundles it satisfies the conditions stated in the lemma. Con-
versely, for f to be an isomorphism of vector bundles it must be a homeomorphism between E1 and E2 and
restrict to a linear isomorphism in each fiber.

Since f takes each fiber to each corresponding fiber by linear isomorphism, it must be a continuous bi-
jection. It also already satisfies the condition of restricting to linear isomorphism on each fiber. The only
thing left to check is that the inverse f−1 is continuous. To do so, we fix an arbitrary point b0 ∈ B and
check f−1 is continuous at b0. First, find neighborhoods Uα and Uβ containing b0 over which E1 and E2

respectively are trivial. Setting U := Uα ∩ Uβ , both bundles are trivial over U . Now compose f with the
local trivializations hα : E1 ⊇ p−11 (Uα)→ Uα ×Kn and hβ : E2 ⊇ p−12 (Uβ)→ Uβ ×Kn to obtain

f̃ := hβ ◦ f ◦ hα : U ×Kn → U ×Kn.

Since f̃ is a composition of functions which restrict to linear isomorphisms, we deduce f̃ is function of the
form f̃(b, v) = (b, g(b)v) with g : U → GLn(K) a continuous function. Regarding g(b) as a matrix, its entries
depend continuously on b and so the entries of the inverse matrix g−1(b) do as well, since the inverse mapping
is continuous. This yields f̃−1 : (b, v)→ (b, g(b)−1v) is a continuous function as well, and we conclude

h−1α ◦ f−1 ◦ h−1β = f̃−1

is continuous and hence f−1 is continuous as well at b0. Since this holds for an arbitrary point b0 ∈ B we
conclude f−1 is continuous and that f is an isomorphism of vector bundles.

An application of the above is:

Example 1.2.5. The tangent bundle TS3 of S3 ⊂ R4 is trivial. This can be seen be defining sections
si(x) = (x, s̃i(x)) with

s̃1(x) = (−x2, x1,−x4, x3)

s̃2(x) = (−x3, x4, x1,−x2)

s̃3(x) = (−x4, x3, x2, x1).

The sections si are motivated by the formulas for quaternion multiplication, and produce linearly independent
sections. Something similar can be done for the spheres S1 and S7, using complex multiplication and octonion
multiplication, yielding linearly independent sections on S1 and S7.
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1.3 Inner products

When studying an object, it is always nice to endow it with extra structure. Since vector bundles are created
by attaching a vector space to every point of a base space, it would be nice if we could endow a vector bundle
with the some of the same structure we would a vector space. A vector bundle already has a topology and
a linear structure, but we could try to lift another very important structure from vector spaces to vector
bundles, the inner product. The natural way to define an inner product on a vector bundle is to require
it restricts to an inner product in each fiber. The only issue is we want a function that takes in multiple
elements of E, but not all pairs of elements of E are suitable to compute an inner product of. Only elements
of E belonging to same fiber seem suitable. A solution is to define a new object using the direct sum of
vector spaces. More details will be given in Section 1.4, but for now the following definition suffices:

Definition 1.3.1 (Direct sum of a vector bundles). Given vector bundles E1 and E2 over the same base
space B, the direct sum of the vector bundles E1 ⊕ E2 is defined as

E1 ⊕ E2 = {
(
(b, v), (b′, v′)

)
∈ E1 × E2 | b = b′}.

It turns out E1 ⊕ E2 is indeed a vector bundle, but this will be discussed in Section 1.4. For now, we will
only consider E ⊕E, the direct sum of a vector bundle with itself. This object interacts nicely with our idea
of an inner product, since all elements are pairs of vectors in the same fiber. Having set this up, we can give
following definition:

Definition 1.3.2 (Inner product). An inner product on a vector bundle is a map 〈·, ·〉 : E ⊕ E → K which
restricts to an inner product on each fiber p−1(b).

The next natural question is, do all vector bundles admit an inner product? It turns out that certain
conditions need to be imposed only on the base space B, and this is summarized in the following proposition:

Lemma 1.3.3. Any vector bundle p : E → B with compact base space B can be endowed with an inner
product.

Remark 1.3.4. The condition that B must be compact can be weakened to B being paracompact.

Proof. To construct an inner product, we lift each inner product in the local trivializations and then use a
partition of unity to go from a local inner product to a global one. Start with an open cover {Uα}α∈A of B
over which B is trivial. By compactness, this can be reduced to a finite subcover {Ui}i∈I . Now considering
the local trivializations hi : p

−1(Ui)→ Ui×Kn, we can pull back the standard inner product on Kn to p−1(Ui)
by setting

〈·, ·〉i : = 〈hi(·), hi(·)〉 : p−1(Ui)⊕ p−1(Ui)→ K.

By Urysohn’s lemma A we can also find a partition of unity {ηi}i∈I subordinate to {Ui}i∈I , since B is
compact. Finally, we define the inner product on E by setting

〈·, ·〉 : E ⊕ E → K(
(b, v), (b, w)

)
7→
∑
i∈I

ηi(b)〈v, w〉i.

The inner product defined above restricts to an inner product on each fiber, since scaled sums of inner
products yields an inner product.

Having the inner product, we are curious to see what other ideas from vector spaces we can lift to vector
bundles. One of the first things we encounter is the idea of a vector subspace and its orthogonal complement.
This can be lifted to vector bundles quite painlessly in the following manner:

Definition 1.3.5 (Vector subbundle). Given a vector bundle p : E → B, a vector subbundle is a subspace
F ⊆ E intersecting each fiber of E in a vector subspace, such that the restriction p : F → B is a vector
bundle.
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Taking more inspiration from linear algebra, we state:

Proposition 1.3.6. If p : E → B is a vector bundle over a compact base space B, and F ⊆ E is a vector
subbundle, then there exists a vector subbundle F⊥ ⊆ E such that F ⊕ F⊥ ∼= E.

Proof. The idea is to define F⊥ in the obvious way, and then showing this is a vector subbundle. Since B
is a compact base space, we can endow E with an inner product. Then we can define F⊥ as the orthogonal
complement of F in each fiber

F⊥ :=
⊔
b∈B

(
p|−1F (b)

)⊥
.

We claim that together with the natural projection map p : F⊥ → B, this is a vector subbundle. If this is
the case, then we can define a map

f : F ⊕ F⊥ → E(
(b, v), (b, w)

)
7→ (b, v + w)

which will be an isomorphism due to Lemma 1.2.4.

For F⊥ to be a vector bundle, it must satisfy the local triviality condition. To see that it does, fix b0 ∈ B,
then we can find opens b0 ∈ Uα and b0 ∈ Uβ such that E and F are trivial over Uα and Uβ respectively. We
set U := Uα ∩ Uβ . If F is an m-dimensional bundle, we can find m locally independent sections using the
trivialization hβ : p−1(U)→ U ×Km by

si : U → p−1(U)

b 7→ h−1β (b, ei)

where ei is the i-th standard basis vector in Km. We can enlarge this set of m independent sections to
a total of n independent sections of E by choosing sm+1, . . . , sn first in the fiber p−1(b0) using the local
trivialization hα, and then extending to U . The sections s1, . . . , sm, sm+1, . . . , sn will remain independent
in a small neighborhood W ⊆ U of b0 by continuity of the determinant function. Now we can apply the
Gram-Schmidt orthogonalization process D with respect to the inner product on E to all sections s1, . . . , sn
in each fiber p−1(b) for b ∈W to obtain new sections s′1, . . . , s

′
n, which are all still continuous maps since the

Gram-Schmidt process is continuous. We can use the sections s′1, . . . , s
′
n to define a local trivialization of E

over W by defining

h : p−1(W )→W ×Kn

s′i(b) 7→ (b, ei).

This trivialization carries F to W ×Km and F⊥ to W ×Kn−m, so h trivializes F⊥. To obtain a cover of B
over which F⊥ trivializes, all we need to do is repeat this process for all b ∈ B to obtain corresponding opens
Wα with local trivializations. Lastly, we need to check f : F ⊕ F⊥ → E is an isomorphism. The map f is
continuous since it is defined using only addition. When restricted to a fiber p−1(b), f is a linear isomorphism
since in each fiber, F⊥ is the orthogonal complement of F . Lemma 1.2.4 then ensures F ⊕ F⊥ ∼= E.

If we set F = E, the last part of the proof shows that the local trivializations of any vector bundle with an
inner product can be chosen to carry the inner product of E to the standard inner product on Kn, and so
these local trivializations are isometries.

1.4 Operations on vector bundles

In Section 1.3 we have already seen a way to make a new vector bundle out of existing ones using the direct
sum. In this section we will explore more ways of doing so.

Perhaps one of the first operations one wishes to explore is the Cartesian product. It is defined as follows:
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Definition 1.4.1 (Cartesian product of vector bundles). Let p1 : E1 → B1 and p2 : E2 → B2 be two vector
bundles, then the Cartesian product of E1 and E2 is defined as

p1 × p2 : E1 × E2 → B1 ×B2.

Lemma 1.4.2. The Cartesian product of two vector bundles is again a vector bundle.

Proof. The fibers of E1 × E2 are given by p−11 (b1) × p−12 (b2), which are again vector spaces, and an open
cover over which E1×E2 is trivial is given by {Uα×Uβ}(α,β)∈A×B, where {Uα}α∈A and {Uβ}β∈B are covers
over which E1 and E2 are trivial respectively. Locally E1 is n-dimensional and E2 is m-dimensional, with
local trivializations are then given by

hα × hβ : p−11 (Uα)× p−12 (Uβ)→ Uα × Uβ × Rn+m,

which shows E1 × E2 is an n+m-dimensional vector bundle.

Next we take a general idea in mathematics, the pullback by a function.

Definition 1.4.3 (Pullback bundle). Given a vector bundle p : E → B and a continuous map g : A → B,
the pullback of E by g is defined as g∗(E) := {

(
a, (b, v)

)
∈ A× E | g(a) = b}.

The definition can be summarized as the vector bundle that makes the following diagram commute:

g∗(E) E

A B

f

p∗ p

g

where f(a, (b, v)) = (b, v).

Lemma 1.4.4. The pullback bundle p∗ : g∗(E)→ A is a vector bundle

Proof. First we must check every fiber (p∗)−1(a) has a vector space structure. The set

(p∗)−1(a) = {
(
a, (b, v)

)
∈ {a} × E | g(a) = b}

carries a natural vector space structure from E by
(
a, (b, v)

)
+
(
a, (b, w)

)
=
(
a, (b, v + w)

)
and λ

(
a, (b, v)

)
=(

a, (b, λv)
)
. For the local triviality, let {Uα}α∈A be an open cover of B over which B trivializes, then an

open cover of A is given by {Wα}α∈A := {g−1(Uα)}α∈A. We can find local trivializations h∗α : (p∗)−1(Wα)→
Wα ×Kn by setting

h∗α :
(
a, (b, v)

)
7→
(
a, hα(b, v)

)
.

This shows the pullback bundle g∗(E) is a vector bundle.

Some properties of the pullbacks are given in the following lemma:

Lemma 1.4.5. Given a vector bundle p : E → C and maps g1 : A→ B, g2 : B → C, then

1. g∗2 ◦ g∗1(E) ∼= (g1 ◦ g2)∗(E)

2. Id∗(E) ∼= E

Proof. For the first claim, consider the isomorphism

f : g∗2 ◦ g∗1(E)→ (g1 ◦ g2)∗(E)

(a, (b, (c, v))) 7→ (a, (c, v))

The function f is continuous since it only drops a coordinate and its inverse is given by

f−1 : (g1 ◦ g2)∗(E)→ g∗2 ◦ g∗1(E)

(a, (c, v)) 7→ (a, (g(a), (c, v)))
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The inverse of f is a composition of continuous functions, and hence f is a homeomorphism. Each fiber is also
linearly mapped onto each corresponding fiber by f , and by Lemma 1.2.4 we conclude f is an isomorphism.

For the second claim, we define the function

f : Id∗(E)→ E

(b, (Id(b), v)) 7→ (b, v),

which is a homeomorphism and a linear mapping on each fiber and hence by Lemma 1.2.4 is an isomorphism.

Example 1.4.6. An example of the pullback bundle is the restriction bundle. Given a vector bundle
p : E → B and a subset A ⊆ B, we can restrict E to A by pulling back E using the inclusion i : A ↪→ B.
This gives a vector bundle

i∗(E) := {
(
a, (b, v)

)
∈ A× E | i(a) = b} → A,

which is precisely E restricted to A, denoted as E|A.

Revisiting the direct sum of two vector bundles, we observe we took an existing operation on vector spaces,
the direct sum, and applied it fiberwise to create a new vector bundle. The direct sum is not the only
operation on vector spaces, there are many more such as the tensor product B and the k-th exterior power.
One can also consider the vector space Hom(V,W ) of all linear maps from V to W , or the dual vector space
Hom(V,K). All these operations can be applied to vector bundles fiberwise, and we would like to know if the
resulting object is again a vector bundle. To answer this question, we must first formalize what we mean by
an operation on vector spaces, which we will do using category theory [Mac71].

Definition 1.4.7. Let V be the category of finite dimensional vector spaces and all isomorphisms between
them. A functor (in two variables) F : V×V→ V is an operation which assigns

1. to each pair V,W ∈ V a vector space F (V,W ) ∈ V;

2. to each pair of isomorphisms f : V1 → V2, g : W1 → W2 an isomorphism F (f, g) : F (V1,W1) →
F (V2,W2);

3. with F (IdV , IdW ) = IdF (V,W );

4. and F (f2 ◦ f1, g2 ◦ g1) = F (f1, g1) ◦ F (f2, g2).

A functor of k variables is defined in a similar fashion.

Some examples of functors of this kind are exactly the operations discussed above, namely the direct sum,
the tensor product, the k-th exterior power, the space Hom(V,W ) and the dual vector space.

Having the idea of a functor on vector spaces in k variables, we can state the following theorem:

Theorem 1.4.8. Let F : V× · · · ×V→ V be a functor of k variables and let E1, . . . Ek be k vector bundles
over the same base space B. Then the disjoint union

E :=
⊔
b∈B

F (p−11 (b), . . . , p−1k (b))

together with the projection map p : E → B can be equipped with a topology such that E is a vector bundle.
The bundle will be denoted by F (E1, . . . , Ek).

Proof. We want to equip E with a topology such that the projection map p : E → B is continuous and such
that we can find local trivializations covering E. The way this is done is by reverse engineering the topology
on E. We start with maps that will later become the local trivializations, and then choose a topology such
that these maps will become continuous.
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Each bundle Ei has an open cover over which it trivializes. Intersecting all open covers, we obtain an
open cover {Uα}α∈A of B over which all vector bundles trivialize. For each b ∈ B, we define

hib : p−1i (b)→ Rni

(b, v) 7→ hi(v),

where by hi(v) we mean the restriction of hi : p
−1
i (b) → {b} × Rn to its last component. The map hib is a

linear isomorphism, and we can define a map which again will be a linear isomorphism by the property of
functors:

F (h1b, . . . , hkb) : F (p−11 (b), . . . , p−1k (b)) = p−1(b)→ F (Rn1 , . . . ,Rnk)

Using this isomorphism, we can define what will become local trivialization for an open Uα as

hα : p−1(Uα)→ Uα × F (Rn1 , . . . ,Rnk)

(b, v) 7→ (b, F (h1b, . . . , hkb)(b, v)).

By construction, hα is a bijection and restricts to a linear isomorphism on each fiber, but it is not yet
continuous, nor does it have a continuous inverse. But, since we can choose our topology on E, we will
choose it in such a way the trivializations will become continuous. The topology on E is defined as

U ⊆ E is open if and only if hα(U) ⊆ Uα × F (Rn1 , . . . ,Rnk) is open for some α ∈ A.

This ensures both hα and h−1α are continuous. The only thing left to check is the topology agrees on
intersections p−1(Uα ∩ Uβ). To see this is the case, consider the following diagram:

p−1(Uα ∩ Uβ) (Uα ∩ Uβ)× F (Rn1 , . . . ,Rnk)

(Uα ∩ Uβ)× F (Rn1 , . . . ,Rnk) p−1(Uα ∩ Uβ)

hα

hβ h−1
β

h−1
α

which shows that the topology on E is forced to be compatible with both hα and hβ . Given an open
W ⊆ p−1(Uα ∩ Uβ), then by definition hα(W ) ⊆ (Uα ∩ Uβ) × F (Rn1 , . . . ,Rnk) is open as well. But then
h−1β (hα(W )) ⊆ p−1(Uα ∩ Uβ) is also open. Hence, on any subset which is open in the topology induced by
hα is also open in the topology induced by hβ . Lastly we need to check p : E → B is continuous, which can
be seen by letting U ⊆ B be open and considering hα(p−1(U)) = U × F (Rn1 , . . . ,Rnk) which is open. This
shows E can be equipped with a topology such that it becomes a vector bundle.

Let us revisit the direct sum. Theorem 1.4.8 ensures the direct sum bundle E1⊕E2 is indeed a vector bundle.
Having this assurance, let us take a look at some examples:

Example 1.4.9. The direct sum of two trivial bundles B × Kn ⊕ B × Km ∼= B × Kn+m which is again a
trivial bundle.

Example 1.4.10. The direct sum of the tangent bundle TSn and the normal bundle p : NSn → Sn with

NSn := {(x, v) ∈ Sn × Rn+1 | v = λx for some λ ∈ R},

where we view Sn embedded inside Rn+1 as all points with unit distance from the origin. If we take the
direct sum TSn ⊕NSn we obtain

TSn ⊕NSn = {
(
(x, v), (x′, v′)

)
∈ TSn ×NSn | x = x′}.

Summing the tangent bundle with the normal bundle, we might expect to obtain the trivial bundle Sn×Rn+1,
which is the case by the isomorphism

f : TSn ⊕NSn → Sn × Rn+1

(x, v, tx) 7→ (x, v + tx)

and we see we can sum two non-trivial bundles to the trivial bundle.
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Example 1.4.11. Taking the base space S0 ∼= {x, y} the set with two elements and the discrete topology,
consider the vector bundles E1 = {x}×K∪{y}×Kn and E2 = {x}×K∪{y}×Km. The direct sum E1⊕E2

is the bundle
E1 ⊕ E2 = {x} ×K2 ∪ {y} ×Kn+m

which is not trivial.

Example 1.4.12. We can also consider the direct sum of the Möbius bundle with itself. This turns out to
be the trivial bundle, which can be seen geometrically by taking the Möbius bundle as being embedded in
S1 × R2, and then considering the orthogonal complement of the Möbius bundle. In each fiber {x} × R2,
taking the orthogonal complement of the Möbius bundle will yield the line in {x}×R2 making an angle of 90
degrees with the fiber of the Möbius bundle. The union of these orthogonal complements will form a second
copy of the Möbius bundle, which results in the decomposition of the trivial bundle as the sum of two Möbius
bundles.

Above there are several examples where the sum of two non-trivial bundles results in a trivial bundle. It
turns out there is a general result:

Proposition 1.4.13. Given a vector bundle E1 over a compact base space B, there exists a bundle E2 such
that E1 ⊕ E2 is trivial

Proof. The idea of the proof is to find an embedding E1 ↪→ B×KN and then use Proposition 1.3.6 to find its
orthogonal complement. First, we start by constructing a suitable open cover. Let b ∈ B, then there exists
an open b ∈ Ub such that E is trivial over Ub. By Urysohn’s lemma A there exists a map ηb : B → [0, 1]
which is zero outside of Ub and non-zero at b. Repeating this process for every b, we get a family of maps
{ηb}b∈B and we can construct an open cover {η−1b (0, 1]}b∈B of B. By compactness of B, this open cover can
be reduced to a finite open cover, which we will relabel to {η−1i (0, 1]}i∈I with corresponding opens Ui. Next,

we define functions f̃i : E → Rn by
f̃i(b, v) = ηi(b)hi(v),

where by hi(v) we mean the restriction of hi : p
−1(Ui) → Ui × Rn to its last component. The functions f̃i

are the rescaling of linear isomorphisms and hence are linear injections on each fiber over η−1i (0, 1]. We now

define a function f̃ with coordinates f̃i by

f̃ : E → RN

(b, v) 7→
(
f̃1(b, v), . . . , f̃m(b, v)

)
.

Since all f̃i are linear injections on each fiber, it follows f̃ is also a linear injection on each fiber of E1. Finally,
we define our embedding

f : E ↪→ B × RN

(b, v) 7→ (b, f̃(b, v))

The image of f is a vector bundle, with local trivialization hi : p
−1(η−1i (0, 1]

)
→ η−1i (0, 1] × Rn given by

restricting to the i-th Rn factor of RN . We conclude we can view E1 as a subbundle of B × RN and by
Proposition 1.3.6 there exists a vector bundle E2 such that E1 ⊕ E2

∼= B × RN

Another important operation on vector bundles is that of the tensor product. This is defined as follows:

Definition 1.4.14 (Tensor product of vector bundles). Let p1 : E1 → B and p2 : E2 → B be two vector
bundles over the same base space B. Then the tensor product of E1 and E2 is defined as

E1 ⊗ E2 :=
⊔
b∈B

p−11 (b)⊗ p−12 (b).

By Theorem 1.4.8 this is a vector bundle when equipped with the suitable topology.
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To explicitly compute the tensor product of two vector bundles can be quite challenging, but it can be
simplified if we take another point of view. To do this, we again take a step back and consider any functor
F : V ×V → V and the corresponding vector bundle F (E1, E2). Recall that by Proposition 1.1.10, we can
view any vector bundles in terms of its gluing functions. This means the vector bundle F (E1, E2) also admits
a family of gluing functions {gαβ : Uα∩Uβ → GLn(K)}. These gluing functions were induced by the functions
hα ◦ h−1β , which in the case of F (E1, E2) are given by

F (h1α, h2α) ◦ F (h−11β , h
−1
2β ) = F (h1α ◦ h−11β , h2α ◦ h

−1
2β ).

Examining the right hand side we see the functions hiα ◦ h−1iβ : Uα ∩ Uβ × Kn → Uα ∩ Uβ × Kn, which in
turn induce gluing functions giαβ : Uα ∩ Uβ → GLn(K). This suggest we might be able to extend F to an
operation on gluing functions, such that the gluing functions of F (E1, E2) are given by F (g1αβ , g2αβ).

Lemma 1.4.15. Given two vector bundles E1 and E2 with families of gluing functions {giαβ : Uα ∩ Uβ →
GLni(K)}, then the gluing functions for the direct sum E1 ⊕ E2 are given by

{g1αβ ⊕ g2αβ : Uα ∩ Uβ → GLn1+n2(K)}.

Proof. The gluing functions of E1 ⊕ E2 are induced by the functions

h1α ◦ h−11β ⊕ h2α ◦ h
−1
2β : Uα ∩ Uβ ×Kn1 ⊕Kn2 → Uα ∩ Uβ ×Kn1 ⊕Kn2 .

Using the isomorphism Kn1 ⊕Kn2 ∼= Kn1+n2 , we can write this in matrix form:

h1α ◦ h−11β ⊕ h2α ◦ h
−1
2β =

(
Id,

(
g1αβ(b) 0

0 g2αβ(b)

))
.

This shows the gluing functions are indeed given by

{g1αβ ⊕ g2αβ : Uα ∩ Uβ → GLn1+n2
(K)}.

The same discussion goes for the tensor product, and we obtain

Lemma 1.4.16. Given two vector bundles E1 and E2 with families of gluing functions {giαβ : Uα ∩ Uβ →
GLni(K)}, the gluing functions for the tensor product E1 ⊗ E2 are given by

{g1αβ ⊗ g2αβ : Uα ∩ Uβ → GLn1n2
(K)}.

Proof. The proof is completely analogous to the one above, but instead of taking direct sums one takes tensor
products.

This also shows the direct sum and tensor product are different operations, since given an n-dimensional
vector bundle E1 and an m-dimensional vector bundle E2, the bundle E1 ⊕ E2 will be n + m-dimensional,
whereas E1 ⊗ E2 will be nm-dimensional.

We know the direct sum and tensor product of vector spaces are both commutative, associative, and the
tensor product is distributive with respect to the direct sum B. Viewing vector bundles in terms of its gluing
functions makes it easy to verify this is also the case for the direct sum and tensor product of vector bundles.

Corollary 1.4.17. The direct sum and tensor product of vector bundles are both, up to isomorphism, com-
mutative, associative, and the tensor product is distributive with respect to the direct sum.

Proof. The direct sum and tensor product of functions are both, up to isomorphism, commutative, associative,
and the tensor product is distributive with respect to the direct sum, and hence by Lemma 1.4.15 and Lemma
1.4.16 this is also the case for vector bundles.

Having an easier way to compute the tensor product of two vector bundles, we can take a look at an example.
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Example 1.4.18. The set of real line bundles up to isomorphism over a given base space B, Vect1R(B), form
an abelian group using the tensor product as group operation. Given two line bundles E1, E2 ∈ Vect1R(B),
then their tensor product E1 ⊗ E2 is again a line bundle since the tensor product of two one-dimensional
vector bundles is again one-dimensional. The inverse of a line bundle E1 ∈ Vect1R(B) with a family of gluing
functions {g1αβ : Uα ∩ Uβ → GLn(R)} functions is given by the vector bundle E2 constructed with the
inverse gluing functions {g2αβ := g−11αβ : Uα ∩Uβ → GLn(R)}. This family still satisfies the conditions stated
in Lemma 1.1.9 since 1× 1 matrices commute. The tensor product E1 ⊗ E2 then has as gluing functions

g1αβ ⊗ g−11αβ = 1: Uα ∩ Uβ → GLn(R).

As a matter of fact, if B is compact we can equip E1 with an inner product, and by Proposition 1.3.6 all
local trivializations can be taken to be isometries. Since the gluing functions are induced by a composition
of isometries, they can only take values g1αβ(x) = ±1, and their squares are always equal to 1. This means
every line bundle is its own inverse in Vect1R(B).

We do not have to restrict ourselves to the real case. The complex case Vect1C(B) can also be given a
group structure. In general, the group Vect1K(B) is called the Picard group of B. See ([Har77], p. 143) for
the definition in the context of ringed spaces.

There are many more interesting functors on vector spaces that can be used on vector bundles, such as the
dual vector space and the k-th exterior power, but throughout the rest of this thesis the main focus will lie
on the direct sum and the tensor product.
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2 Classification of vector bundles over Sk

In this section we will develop tools to classify vector bundles over the sphere Sk. Our main focus will be
results that allow us to use ideas from algebraic topology to study vector bundles. We will be following the
discussion in [Hat03].

2.1 Homotopy invariance of vector bundles

To further study vector bundles we will first be developing some technical tools. These tools are in particular
needed to prove Theorem 2.1.4 and Theorem 2.2.5, which are some results relating homotopies of functions
to isomorphisms of vector bundles. We start with the following two lemmas:

Lemma 2.1.1. Let X be a compact space and p : E → X × [a, b] be an n-dimensional vector bundle, which
restricts to trivial bundles p : E|X×[a,c] → X × [a, c], p : E|X×[c,b] → X × [c, b] for some c ∈ ]a, b[ , then
p : E → X × [a, b] is trivial as well.

Proof. We want to find an isomorphism h : E → X × [a, b]×Kn, utilizing we already have trivializations

h1 : E1 → X × [a, c]×Kn

h2 : E2 → X × [c, b]×Kn.

To be able to define an isomorphism on E using h1 and h2, they must agree on p−1(X × {c}). To ensure
they do, we define an isomorphism f : X × [c, b]×Kn → X × [c, b]×Kn, which on each slice X ×{x}×Kn is
given by h1 ◦ h−12 : X × {c} ×Kn → X × {c} ×Kn. Now we can define the function h : E → X × [a, b]×Kn
by setting

h(b, v) : =

{
h1(b, v) if b ∈ X × [a, c]

f ◦ h2(b, v) if b ∈ X × [c, b]
.

The function h maps each fiber by linear isomorphism and is continuous since it agrees on p−1(X ×{c}). By
Lemma 1.2.4 h is an isomorphism.

Lemma 2.1.2. Let X be a compact space and p : E → X × I be a vector bundle, then there exists an open
cover {Uα}α∈A of X such that each restriction p : p−1(Uα × I)→ Uα × I is trivial.

Proof. The idea is to find suitable opens Ui× ]ai, bi[ over which E trivializes and then use Lemma 2.1.1
repeatedly. Since E is a vector bundle it admits an open cover {Wβ}β∈B over which it trivializes. Fix
x0 ∈ X, then since {Wβ}β∈B covers X × I it also covers {x0} × I. By compactness of I, we can extract a
finite subcover of {Wβ}β∈B covering {x0} × I, which we relabel {Wi}i∈I . We assume that after projecting
onto I, all Wi are open intervals. If this were not the case, we cover Wi with a finite number of opens that
do satisfy this property and take those to be members of the opens cover instead. By the Tube Lemma
([Cra13], p. 84) we can find opens Ui ⊆ X and ]ai, bi[ ⊆ I with Ui× ]ai, bi[ ⊆ Wi such that the collection
{Ui× ]ai, bi[ }i∈I covers {x0}× I. Without relabeling we order {Ui× ]ai, bi[ }i∈I in an increasing fashion with
respect to I, and find a partition 0 = t0 < t1 < · · · < tk = 1 of I with the property ti ∈ ]ai−1, bi−1[ ∩ ]ai, bi[
for all 1 ≤ i ≤ k. By construction E is trivial over Ui × [ti−1, ti] for all i ∈ I. Setting U :=

⋂
i∈I Ui, we see

E is trivial over U × [ti−1, ti] for all i ∈ I as well. Now we use Lemma 2.1.1 repeatedly on {U × [ti−1, ti] }i∈I
to conclude E is trivial over U × I. Repeating this construction for all x ∈ X we obtain the desired open
cover {Uα}α∈A.

Having these two technical lemmas we can go on and prove the following result:

Proposition 2.1.3. The restrictions of a vector bundle p : E → X × I over X × {0} and X × {1} are
isomorphic if X is compact.

Proof. The idea is “push along” the restriction bundle over X × {1} to the restriction bundle over X × {0}.
First, by Lemma 2.1.2 we can choose an open cover {Uα}α∈A of X such that E is trivial over {Uα × I}α∈A.
By compactness of X, we can find a finite subcover and we relabel this cover as {Ui}i∈I and using Urysohn’s
Lemma A we find a partition of unity {ηi}i∈I subordinate to {Ui}i∈I .
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For i ∈ {0} ∪ I, we define functions ϕi : X → R by ϕi := η1 + · · · + ηi. In particular, ϕ0 = 0 and
ϕm = 1, where m = maxi∈I{i}. To be able to “push along” the restriction bundle, we define

Xi = {(x, ϕi(x)) | x ∈ X} ⊆ X × I.

Notice X0 = X × {0} and Xm = X × {1}. Now we define isomorphisms fi : E|Xi → E|Xi−1
for 1 ≤ i ≤ m

between the restriction bundles. The isomorphisms fi are given by

fi(x, ϕi(x), v) = (x, ϕi−1(x), v)

Essentially, fi is the identity outside p−1(Ui × I) ∩ E|Xi and on p−1(Ui × I) ∩ E|Xi it projects each fiber
p−1(x, ϕi(x)) to the fiber p−1(x, ϕi−1(x)). This can be seen by considering a point outside Ui and computing

ϕi(x) = ϕi−1(x) + ηi(x) = ϕi−1(x)

which holds since supp(ηi) ⊆ Ui. For fi to be an isomorphism of vector bundles, we need to check it is
homeomorphism and a linear isomorphism on each fiber. For continuity, we remark fi is a composition of
continuous functions. The inverse of fi is given

f−1i (x, ϕi−1(x), v) = (x, ϕi(x), v)

which is continuous by the same reasoning. Outside p−1(Ui × I) ∩ E|Xi the function fi is the identity and
thus maps fibers isomorphically to each other. On p−1(Ui × I) ∩ E|Xi = p−1((Ui × I) ∩ Xi−1) we can use
the fact that E trivializes over Ui × I which yields the trivialization hi : p

−1(Ui × I) → Ui × I × Kn. The
composition

hi ◦ fi ◦ h−1i :
(
(Ui × I) ∩Xi

)
×Kn →

(
(Ui × I) ∩Xi

)
×Kn

(x, ϕi(x), v) 7→ (x, ϕi−1(x), v)

is a linear isomorphism on each fiber and thus fi must be as well. Since fi is a homeomorphism and a
linear isomorphism on each fiber, by Lemma 1.2.4 fi is an isomorphism of vector bundles. The composition
f := f1 ◦ · · · ◦ fm is again an isomorphism of vector bundles. In particular it is an isomorphism between the
restrictions of E over Xm = X × {1} and X0 = X × {0} and our result is proven.

The above result turns out te be a very powerful tool when studying isomorphism classes of vector bundles
as we will see in Theorem 2.2.5. It also implies the following result:

Theorem 2.1.4. Given a vector bundle p : E → B and homotopic maps g0, g1 : A→ B where A is compact,
then the pullback bundles g∗0(E) and g∗1(E) are isomorphic.

Proof. Let G : A × I → B be the homotopy from g0 to g1. If we consider the pullback bundle G∗(E), then
the bundles g∗0(E) and g∗1(E) are isomorphic to the restrictions of G∗(E) over A × {0} and A × {1}. By
Proposition 2.1.3 these bundles are isomorphic.

Theorem 2.1.4 seems to imply there is a relation between homotopies and isomorphisms of vector bundles.
We will explore this further, starting with the following corollary:

Corollary 2.1.5. Let g1 : A → B be a map of compact spaces which is a homotopy equivalence. Then the
map g∗1 : V ect(B)→ V ect(A) is a bijection of sets.

Proof. If A and B are homotopy equivalent by g1, then by definition there exists a function g2 : B → A such
that g2 ◦ g1 ' IdA and g1 ◦ g2 ' IdB . Considering the functions

g∗1 : VectnK(B)→ VectnK(A)

g∗2 : VectnK(A)→ VectnK(B),

we see that by the property of pullbacks and Theorem 2.1.4 g∗1 ◦ g∗2 = (g2 ◦ g1)∗ = Id∗A = IdVectnK (A) and
likewise that g∗2 ◦ g∗1 = IdVectnK (B). This shows g∗1 is a bijection between VectnK(A) and VectnK(B) with inverse
g∗2 .
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A direct application is the following example:

Example 2.1.6. Every vector bundle over a compact contractible base space is trivial.

This example motivates the studying of vector bundles over non-contractible base spaces. A nice set of base
spaces is the set of spheres Sk, since they are not contractible but still well-behaved in a lot of aspects.

2.2 Clutching functions

In the previous subsection we have developed some tools for general vector bundles. Now we will restrict
our attention to vector bundles over Sk. There are many reasons to study vector bundles over Sk, but one
of the main reasons is that it is comparatively easy to do so. This is due to the fact Sk can be covered by
two contractible opens, which can be seen by taking the northern and southern hemispheres Dk

+ and Dk
−

and enlarging them slightly to open balls U+ and U−. Since U± is contractible, any vector bundle over U±
is trivial by Example 2.1.6, which means any vector bundle over Sk can be identified with a single gluing
function g : U+ ∩ U− → GLn(K) by Proposition 1.1.10. We can even restrict our gluing function g to the
equator Sk−1 ⊂ Sk to obtain a function f : Sk−1 → GLn(K), which will yield an isomorphic vector bundle
due to Sk−1 being homotopy equivalent to U+ ∩ U− and Theorem 2.2.5. Conversely, starting with a map
f : Sk−1 → GLn(K) we can construct a vector bundle by extending f to U+ ∩U− ∼= Sk−1× ]− ε, ε[ by letting
f |Sk−1×{t} := f |Sk−1×{0} for all t ∈ ]− ε, ε[. This gives rise to the following definition:

Definition 2.2.1 (Clutching function). Given a map f : Sk−1 → GLn(K) we can construct an n-dimensional
vector bundle p : Ef → Sk using f as gluing function as in Lemma 1.1.9, which is then called the clutching
function for Ef .

Let us consider some examples of clutching functions:

Example 2.2.2. We start with the familiar tangent bundle TS2. To recover the clutching function f : S1 →
GL2(R) that corresponds to TS2, our first task is to describe trivial bundles over Dk

±. The fact that we name
the northern and southern hemisphere Dk

± is suggestive notation for the fact there exists a homeomorphism
Dk
±
∼= Dk. If we flatten out Dk

+ to a disk, we can describe a trivialization of Dk
+ by taking a unit vector v+

at the North Pole, and defining a section

s1+ : Dk
+ → Dk

+ × R2

x 7→ (x, v+).

Taking the vector v+ and rotating it 90 degrees counter-clockwise, we obtain a vector w+ and similarly we
define the section

s2+ : Dk
+ → Dk

+ × R2

x 7→ (x,w+).

The results in the following image:

Figure 1: Flattened out Dk
+ with sections s1+ and s2+.
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If we map our flattened Dk
+ back to the sphere, these sections correspond to taking the vectors v+ and w+

at the North Pole and transporting them across each meridian circle, maintaining a constant angle with the
meridian.

Figure 2: Dk
+ with section s1+ ([Hat03], p. 22).

These sections s1+ and s2+ define a trivialization of Dk
+ by demanding the map h+ : p−1(D2

+) → D2
+ × R2

maps the sections to the standard basis of R2. We can reflect the sections s1+ and s2+ across the plane
containing the equator to obtain sections s1−, s2− and consequently a trivialization of Dk

−.

Now that we have trivializations of Dk
±, we can recover the clutching function f by reading off the coor-

dinates of s1−, s2− at the equator in the coordinate system of s1+, s2+. Starting at a point where the two
trivializations agree and going around the equator S1 counterclockwise, f rotates s1−, s2− to s1+, s2+ by an
angle starting at 0 and increasing to 4π when going around the equator. If we parameterize S1 by the angle
θ from the starting point, the clutching function is then given by

f : S1 → GL2(R)

eiθ 7→
(

cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
.

Example 2.2.3. An example which will be of great importance in the following section is the tautological
complex line bundle. Similar to Example 1.2.3, we can define the tautological complex line bundle H over
CP1 to be

p : H := {(l, v) ∈ CP1 × C2 | v ∈ l} → CP1.

Notice we can view CP1 as S2 if we identify each equivalence class [z0, z1] ∈ CP1 with the ratio z :=
z0
z1
∈ C ∪ {∞} ∼= S2, where the identification of C ∪ {∞} with S2 is given by the stereographic projec-

tion. If we do this, points in the disk D2
0 inside the unit circle S1 ⊂ C ∪ {∞} ∼= CP1 can uniquely be

expressed as [ z0z1 , 1] = [z, 1] ∈ CP1 and points in the disk D2
∞ outside S1 can be expressed uniquely as

[1, z1z0 ] = [1, z−1] ∈ CP1. More details about this identification will be given in Subsection 3.1.

As with the previous example, we are going to give trivializations using sections over D2
0 and D2

∞. We
define

s0 : D2
0 → H|D2

0
s∞ : D2

∞ → H|D2
∞

[z, 1] 7→ ([z, 1], (z, 1)) [1, z−1] 7→ ([1, z−1], (1, z−1)).

The sections s0 and s∞ define trivializations h0 and h∞ by requiring the second component of the sections
get sent to 1 ∈ C. Examining their intersection S1 we find we can pass from the trivialization over D2

∞ to
the trivialization over D2

0 by multiplying with z ∈ S1. This implies the clutching function for H is given by

f : S1 → GL1(C)

z 7→ (z).
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Here we implicitly took D2
∞ as D2

+ and D2
0 as D2

− when identifying CP1 ∼= S2. If we instead chose the
opposite labeling convention, where D∞ is identified with D− and D2

0 is identified with D2
+, the clutching

function would have been given by f(z) = (z−1).

What we would like to do is classify all vector bundles over Sk. Having clutching functions will make this
easier, since we can identify each vector bundle with a clutching function and vice-versa. In the previous
section we have seen there is a relationship between homotopic maps and isomorphic vector bundles and as it
turns out this relationship also exists between homotopic clutching functions and isomorphic vector bundles
over Sk, which will be made precise in Theorem 2.2.5. But first, to prove this theorem, we need the following
lemma:

Lemma 2.2.4. The space GLn(C) is path-connected.

Proof. Given a matrix A ∈ GLn(C) it can be diagonalized using the elementary row operation of adding a
scalar multiple of one row to another repeatedly. Adding a scalar multiple λ of row i to a different row j
corresponds to multiplying A from the left with the elementary matrix

M =



1
. . .

1
. . .

λ 1
. . .

1


where mj,i = λ. A path from A to MA can be realized by γ(t) = MtA where

Mt =



1
. . .

1
. . .

tλ 1
. . .

1


.

This path lies entirely in GLn(C) since det(Mt) = 1 for all t ∈ I, and concatenating the paths corresponding
to all elementary row operations needed to diagonalize A gives a path from A to a diagonal matrix. The set
of diagonal matrices in GLn(C) is homeomorphic to the product

(C \ {0})× · · · × (C \ {0})︸ ︷︷ ︸
n times

which is path-connected since C \ {0} is path-connected and products of path-connected spaces are again
path-connected. We conclude GLn(C) is path-connected.

Now we are ready to state and prove the main theorem of this section:

Theorem 2.2.5. The map Φ: [Sk−1, GLn(C)]→ VectnC(Sk) given by [f ] 7→ [Ef ] is a bijection.

Proof. First, we must prove Φ is well-defined. Given two homotopic maps f0 ' f1 : Sk−1 → GLn(C), there
exists a homotopy F : Sk−1 × I → GLn(C) with F (x, 0) = f0(x) and F (x, 1) = f1(x). We can use F to
construct a vector bundle

p : EF → Sk × I,
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using the same reasoning as we did for the clutching functions since D±×I is contractible as well. The vector
bundle EF will restrict to Ef0 over Sk×{0} and to Ef1 over Sk×{1}. By Proposition 2.1.3 the bundles Ef0
and Ef1 are isomorphic since Sk is compact and we conclude Φ is well-defined.

Second, we must show Φ is a bijection and to do so we construct an inverse Ψ. Given a vector bundle
p : E → Sk, its restrictions E+ and E− over the upper and lower hemispheres Dk

+ and Dk
− respectively are

trivial by contractibility of Dk
± and Example 2.1.6. Choosing trivializations

h± : E± → Dk
± × Cn

the composition h+ ◦ h−1− induces a function

f : Sk−1 → GLn(C)

as we have seen before in our discussion regarding gluing functions. We define Ψ(E) to be the homotopy
class of f .

We must check Ψ(E) is independent of the choice of trivializations h± : E± → Dk
± × Cn and hence well-

defined. Given different trivializations h0± : E± → Dk
± ×Cn and h1± : E± → Dk

± ×Cn, they differ by a map

h̃± : Dk
± → GLn(C). Since Dk

± is contractible, h̃± is homotopic to a constant map

c± : Dk
± → GLn(C)

x 7→ A±.

By path-connectedness ofGLn(C), any constant map is homotopy equivalent to the map that sends everything
to the identity in GLn(C) by composing with a path going from A± ∈ GLn(C) to Id ∈ GLn(C), and we
obtain

[h0±] = [h̃± ◦ h1±] = [c± ◦ h1±] = [Id ◦h1±] = [h1±].

If h0± and h1± are homotopy equivalent then the compositions h0+ ◦h−10− and h1+ ◦h−11− are homotopy equiv-
alent as well and induce homotopy equivalent clutching functions f0 and f1. We conclude Ψ is well-defined.

Lastly we must check Φ and Ψ are inverses of each other. This is the case since Ψ ◦ Φ([f ]) = [f ] and
Φ ◦Ψ([E]) = [E].

We explore a direct consequence of the Theorem 2.2.5:

Corollary 2.2.6. Every complex vector bundle over S1 is trivial.

Proof. The statement is equivalent to claiming VectnC(S1) consists of a single element, which is the case
since [S0, GLn(C)] consists of a single element by path-connectedness of GLn(C). Theorem 2.2.5 provides a
bijection between [S0, GLn(C)] and VectnC(S1) and we conclude VectnC(S1) only consists of a single element.

Theorem 2.2.5 made use of Lemma 2.2.4, which turned out to be of importance when finding homotopies
between clutching functions. One might wonder if the same result exists for [Sk−1, GLn(R)] and VectnR(Sk),
but this turns out not to be true since GLn(R) is not path-connected, which can be seen by considering the
continuous surjection

det(·) : GLn(R)→ R \ {0}

whose image R\{0} has two path components. To be more precise, GLn(R) has exactly two path components,
namely GL+

n (R) and GL−n (R), the matrices with positive and negative determinant respectively ([Lee00], p.
236). However, a result similar to Theorem 2.2.5 does exist for oriented vector bundles. To define them we
must first recall the definition of an orientation of a vector space:

Definition 2.2.7 (Orientation of bases). Let V be a finite-dimensional vector space and let {v1, . . . vn} and
{w1, . . . wn} be two ordered bases, then the bases are said to have the same orientation if the unique linear
transformation A : V → V mapping vi 7→ wi for all 1 ≤ i ≤ n has positive determinant.
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Having the same orientation defines an equivalence relation on the ordered bases of a vector space V . We
can use this equivalence relation to define an orientation on V :

Definition 2.2.8 (Orientation of a vector space). Let V be a finite-dimensional vector space, then an
orientation of V is an assignment of +1 and −1 to the equivalence classes of ordered bases of V under the
equivalence relation of having the same orientation.

When considering the vector space Rn, the standard basis is usually given positive orientation. Having the
definition of an oriented vector space, we can define oriented vector bundles as:

Definition 2.2.9 (Oriented vector bundle). A real vector bundle p : E → B is called orientable if each
fiber can be given an orientation such that there exists an open cover {Uα}α∈A of B such that the local
trivializations hα : p−1(U)→ U ×Rn carry the orientation of the fibers p−1(b) to the standard orientation of
Rn, and when each fiber is given such an orientation the vector bundle is called oriented.

Similar to before, we define:

Definition 2.2.10. The set of isomorphism classes of oriented real n-dimensional vector bundles over a base
space B is denoted Vectn+(B).

Note the isomorphisms between elements of Vectn+(B) are required to preserve orientations. A non-example
of an orientable vector bundle is the following:

Non-example 2.2.11. The Möbius bundle is non-orientable. This can be seen be noticing any orientable
one-dimensional bundle over S1 must admit a section of unit vectors which all have the same orientation,
which is not the case with the Möbius bundle by Example 1.2.2.

Since all fibers of oriented vector bundles have the same orientation, the clutching function of an oriented
vector bundle can be taken to map only into GL+

n (R). Since GL+
n (R) is path-connected the following holds:

Proposition 2.2.12. There exists a bijection between [Sk−1, GL+
n (R)] and Vectn+(Sk).

Proof. The proof is analogous to the proof of Theorem 2.2.5.

The power of Theorem 2.2.5 and Proposition 2.2.12 lies in the fact that we can use tools from a different
area of study, algebraic topology, to analyze vector bundles.

As an example, consider real vector bundles over S2. Given a clutching function f : S1 → GLn(R) it
must either map entirely into GL+

n (R) or into GL−n (R) since S1 is path-connected. This implies every vector
bundle over S2 is orientable with two possible orientations, determined by the orientation in a single fiber.
Note the same argument holds for vector bundles over Sk with k ≥ 2, since Sk−1 is path-connected for all
k ≥ 2. If we restrict our attention to 2-dimensional vector bundles over S2, we can use the fact that GL+

2 (R)
deformation retracts onto SO(2) by the Gram–Schmidt process D. This implies there exists a bijection

[S1, GL+
2 (R)] ∼= [S1, SO(2)].

The advantage of SO(2) over GL+
2 (R) is that it is homeomorphic to S1, since any orientation preserving

isometry of R2 corresponds to a rotation by an angle θ. This implies, together with Proposition 2.2.12 that

[S1, S1] ∼= Vect2+(S2).

We also know any class [f ] ∈ [S1, S1] can be represented by the function

fm : S1 → S1

z 7→ zm,

for m ∈ Z ([Hat05], p. 29), which gives a bijection between [S1, S1] and Z, which in turn gives the bijection

Vect2+(S2) ∼= Z.
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Furthermore, for any vector bundle Efm := Em ∈ Vect2+(S2) there exists an isomorphism Em ∼= E−m. This
can be seen by considering the map fm : S1 → SO(2) under the identification S1 ∼= SO(2). We then obtain

fm : S1 → SO(2)

eθi 7→ Rmθ :=

(
cos(mθ) − sin(mθ)
sin(mθ) cos(mθ)

)
.

Recall that by Lemma 1.1.9, the vector bundles Em and E−m are given by

Em = D2
+ × R2 tD2

− × R2/(eiθ, v) ∼ (eiθ, Rmθv)

and

E−m = D2
+ × R2 tD2

− × R2/(eiθ, v) ∼ (eiθ, R−mθv).

We claim an isomorphism between Em and E−m is given by

f : Em → E−m

(b, v) 7→ (b, v) .

The map f is well defined on D2
± × R2, so we only need to check it is also well defined on the intersection

p−1(S1). We compute

f(eiθ, v) =
(
eiθ, v

)
f(eiθ, Rmθv) =

(
eiθ, Rmθv

)
.

For f to be well defined we must have

E−m 3
(
eiθ, v

)
∼
(
eiθ, Rmθv

)
∈ E−m,

and this is the case since (
eiθ, Rmθv

)
∼
(
eiθ, R−mθRmθv

)
=
(
eiθ, v

)
.

Now that we know f is well defined, we remark f is also continuous and a linear isomorphism on each fiber,
and hence by Proposition 1.2.4 f is an isomorphism. We conclude Em ∼= E−m.

Since every 2-dimensional vector bundle over S2 is orientable with at most two orientations, every element
of Vect2R(S2) can be represented by Em for a certain m ≥ 0, and hence there exists a bijection

Vect2R(S2) ∼= N.

We have seen an example of the above, namely the tangent bundle E2
∼= TS2.

We conclude this section with two lemmas about clutching functions and operations on vector bundles and
an example:

Lemma 2.2.13. Given two vector bundles p1 : E1 → Sk and p2 : E2 → Sk with clutching functions f1, f2 : Sk−1 →
GLn(K) then the clutching function of E1 ⊕ E2 is given by f1 ⊕ f2.

Proof. This is a direct consequence of Lemma 1.4.15, since clutching functions are a particular case of gluing
functions.

Lemma 2.2.14. Given two vector bundles p1 : E1 → Sk and p2 : E2 → Sk with clutching functions f1, f2 : Sk−1 →
GLn(K) then the clutching function of E1 ⊗ E2 is given by f1 ⊗ f2.

Proof. This is a direct consequence of Lemma 1.4.16, since clutching functions are a particular case of gluing
functions.

These two lemmas allow us to simplify the analysis of vector bundles greatly, since they turn our global
topological problem into a local problem about linear algebra. As an example, consider the following:
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Example 2.2.15. The tautological line bundle p : H → CP1 has clutching function f : S1 → GL1(C), z 7→ (z)
by Example 2.2.3. We can show there exists an isomorphism (H ⊗H) ⊕ E0

∼= H ⊕H by considering their
clutching functions. The clutching function for (H ⊗H)⊕ E0 is given by

z 7→ (f ⊗ f)⊕ Id =

(
z2 0
0 1

)
,

and the clutching function for H ⊕H is given by

z 7→ f ⊕ f =

(
z 0
0 z

)
.

We wish to construct a homotopy from f ⊕ f to (f ⊗ f)⊕ Id and use Theorem 2.2.5. To do so, first notice
by Lemma 2.2.4 there exists a path γ : I → GL2(C) with

γ(0) = Id, γ(1) =

(
0 1
1 0

)
.

Second, notice we can write (
z 0
0 z

)
=

(
z 0
0 1

)(
1 0
0 z

)
.

A homotopy from f ⊕ f to (f ⊗ f)⊕ Id is then given by

t 7→
(
z 0
0 1

)
γ(t)

(
1 0
0 z

)
γ(t).

We verify this is indeed a homotopy from f ⊕ f to (f ⊗ f)⊕ Id by checking

0 7→
(
z 0
0 1

)
γ(0)

(
1 0
0 z

)
γ(0) =

(
z 0
0 1

)(
1 0
0 z

)
=

(
z 0
0 z

)
,

and

1 7→
(
z 0
0 1

)
γ(1)

(
1 0
0 z

)
γ(1) =

(
z 0
0 1

)(
0 1
1 0

)(
1 0
0 z

)(
0 1
1 0

)
=

(
0 z
1 0

)(
0 1
z 0

)
=

(
z2 0
0 1

)
.

Since f ⊕ f ' (f ⊗ f)⊕ Id, we conclude by Theorem 2.2.5 that (H ⊗H)⊕ E0
∼= H ⊕H.
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3 Classification of vector bundles over CP1

In the following section we are going to restrict our attention to complex vector bundles over a single base
space, CP1. In 1957 Grothendieck showed every holomorphic vector bundle E over CP1 splits into a sum
of line bundles E ∼=

⊕
i∈I Ei where Ei has clutching function fi(z) = zki for some ki ∈ Z [Gro57]. The

argument involved used some big machinery from algebraic topology and geometry. In 1982 Hazewinkel and
Martin gave a proof of the same fact using considerably simpler tools, namely only linear algebra [HM82]. We
are going to give a similar result to [Gro57] for topological vector bundles, namely that every n-dimensional
topological vector bundle E over CP1 splits uniquely as E ∼= Ek ⊕ εn−1, where p : Ek → CP1 is a bundle
with clutching function z 7→ zk and εn−1 is an n− 1-dimensional trivial bundle. We will be using a method
similar to [HM82] with the help of tools found in [Hat03].

3.1 Identification of CP1 with S2

Our first goal is to transfer the tools we have developed in Section 2 about vector bundles over Sk to vector
bundles over CP1. By Corollary 2.1.5 it is enough to find a homotopy equivalence between S2 and CP1,
because homotopy equivalent base spaces give a bijection between isomorphism classes of vector bundles. As
we will show, S2 and CP1 are not only homotopy equivalent, but even homeomorphic.

Lemma 3.1.1. The spaces CP1 and S2 are homeomorphic.

Proof. We wish to construct an explicit homeomorphism between these two spaces, which we will do by first
giving a homeomorphism between CP1 and the one-point compactification of C, the space C∪{∞}, and then
doing the same for C ∪ {∞} and S2. Given an equivalence class

[z0, z1] ∈ {(z0, z1) ∈ C2}/(z0, z1) ∼ λ(z0, z1) = CP1

we can define a homeomorphism between CP1 and C ∪ {∞} by

g1 : CP1 → C ∪ {∞}

[z0, z1] 7→ z0
z1
,

where z0
z1

:= ∞ if z1 = 0. The map g1 is well defined since g1([z0, z1]) = z0
z1

= λz0
λz1

= g1([λz0, λz1]). The
inverse of g1 is given by

g−11 (z) =

{
[z, 1] if |z| ≤ 1

[1, z−1] if |z| ≥ 1

where by convention ∞−1 := 0. Both g1 and its inverse are continuous, since g1 is a continuous function on
C and also continuous at ∞ by definition of the topology of a one-point compactification ([Cra13], p. 90).
The inverse is continuous inside the unit circle and outside the unit circle, and on the intersection S1 we have
[z, 1] = [z−1z, z−11] = [1, z−1] and hence the inverse is continuous as well. This makes g1 a homeomorphism
and we conclude CP1 is homeomorphic to C ∪ {∞}.

For the homeomorphism between C ∪ {∞} and S2 we want to use the stereographic projection ([Lee00],
p.30). Recall this is given by

g2 : S2 → C ∪ {∞}

(x1, x2, x3) 7→ x1 + ix2
1− x3

,

where (0, 0, 1) 7→ ∞. Again recall the inverse of g2 is given by

g−12 : CP1 → S2

z 7→
(
z̄ + z

zz̄ + 1
,

z − z̄
i(zz̄ + 1)

,
zz̄ − 1

zz̄ + 1

)
.

The stereographic projection is continuous with continuous inverse and we obtain a homeomorphism between
S2 and C ∪ {∞}. Composing g1 and g−12 we obtain a homeomorphism between CP1 and S2.
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Being homeomorphic implies being homotopy equivalent by simply taking the homeomorphism and its inverse
as homotopy equivalences. By Corollary 2.1.5, there exists a bijection VectnC(CP1) ∼= VectnC(S2). This means
we can use our tools from Section 2 to study vector bundles over CP1. In particular, we obtain a bijection
[S1, GLn(C)] ∼= VectnC(CP1) identifying each vector bundle over CP1 with a clutching function.

3.2 Laurent polynomials

The aim of this subsection is to further simplify the study of [S1, GLn(C)]. As of now, the clutching functions
involved were induced by trivializations of vector bundles. However, we have very little control over the
behavior of the trivializations and by extension that of the clutching functions. The main part of this
subsection will be devoted to showing every clutching function is homotopic to a Laurent polynomial clutching
function.

Definition 3.2.1 (Laurent polynomial). A Laurent polynomial is a function l : U → C, where U ⊆ C, given
by

l(z) =
∑
|n|≤N

anz
n,

with an ∈ C.

With a Laurent polynomial clutching function l : S1 → GLn(C) we mean a function where if we consider l(z)
as a matrix in GLn(C), all entries li,j(z) are Laurent polynomials. Such a matrix is called a Laurent polyno-
mial matrix. Alternatively, one could regard a Laurent polynomial clutching function as a sum

∑
|n|≤N Anz

n

where An are linear maps from Cn to itself. Note An need not be invertible, we only demand the sum∑
|n|≤N Anz

n is invertible for all z ∈ S1.

To show every clutching function is homotopic to a Laurent polynomial clutching function, we first need
a technical lemma. The proof of this lemma does not contain any techniques relevant to the rest of this
thesis, so one may skip ahead to Proposition 3.2.3.

Lemma 3.2.2. Given a continuous function f : S1 → C and an ε > 0, there exists a Laurent polynomial
l : S1 → C such that |l(z)− f(z)| < ε for all z ∈ S1.

Proof. We wish to approximate f by a function l(z) =
∑
|n|≤N anz

n. Motivated by the Fourier series, we set

an :=
1

2π

∫ 2π

0

f(eit)e−intdt.

Note (an)n∈Z is bounded since |f | is a continuous functions on a compact domain and hence bounded by
some M > 0 and we can compute

|an| =
∣∣∣∣ 1

2π

∫ 2π

0

f(eit)e−intdt

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣f(eit)e−int
∣∣ dt

=
1

2π

∫ 2π

0

|f(eit)| |e−int|dt

≤ 1

2π
M

∫ 2π

0

dt

= M.

We conclude |an| ≤M for all n ∈ Z. For 0 ≤ r ≤ 1 we define

u(r, θ) =
∑
n∈Z

anr
|n|einθ.
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For fixed r < 1, the series
∑
n∈Z anr

|n|einθ converges absolutely and uniformly in θ as can be seen by the
computation ∣∣∣∣∣∑

n∈Z
anr
|n|einθ

∣∣∣∣∣ ≤∑
n∈Z
|anr|n|einθ|

=
∑
n∈Z
|an| |r|n|| |einθ|

≤M
∑
n∈Z
|r|n||

= M

( ∞∑
n=0

rn +

∞∑
n=1

rn

)

= M

(
1

1− r
+

1

1− r
− 1

)
= M

1 + r

1− r
.

The idea is to show u uniformly converges to f as r approaches 1. If this is the case we can sum finitely many
terms of u(r, θ) with r sufficiently close to 1 to obtain the desired approximation of f by a Laurent polynomial.

First off, we fix r < 1 and notice

u(r, θ) =

∞∑
n=−∞

1

2π

∫ 2π

0

f(eit)e−iπtdt r|n|einθ

=

∞∑
n=−∞

1

2π

∫ 2π

0

r|n|f(eit)eiπ(θ−t)dt

=

∫ 2π

0

1

2π

∞∑
n=−∞

r|n|f(eit)eiπ(θ−t)dt.

The interchange of summation and integration is justified by the fact
∑∞
n=−∞ r|n|f(eit)eiπ(θ−t) converges

uniformly by a similar argument as seen when showing uniform convergence of u(r, θ). We define the Poisson
kernel as

P (r, ϕ) :=
1

2π

∞∑
n=−∞

r|n|einϕ for 0 ≤ r < 1 and ϕ ∈ R,

and then u(r, θ) =
∫ 2π

0
P (r, θ− t)f(eit)dt. The motivation behind defining the Poisson kernel is given by the

fact that the Poisson satisfies the following properties:

1. As a function of ϕ, P (r, ϕ) is even, periodic with period 2π, and monotone decreasing on [0, π]. In
particular, P (r, ϕ) ≥ P (r, π) > 0 for all r > 1 and ϕ ∈ R.

2. For fixed r < 1, the integral
∫ 2π

0
P (r, ϕ)dϕ = 1.

3. For fixed ϕ ∈ ]0, π[ , P (r, ϕ)→ 0 as r → 1.
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To prove these three properties, we first compute

P (r, ϕ) =
1

2π

∞∑
n=−∞

r|n|einϕ

=
1

2π

∞∑
n=0

rneinϕ +
1

2π

∞∑
n=1

rne−inϕ

=
1

2π

∞∑
n=0

(reiϕ)n +
1

2π

∞∑
n=1

(re−iϕ)n

=
1

2π

(
1

1− reiϕ
+

1

1− re−iϕ
− 1

)
=

1

2π

(
1− r2

1− reiϕ − re−iϕ + r2

)
=

1

2π

1− r2

1− 2r cos(ϕ) + r2
.

For the first property, we can use the fact P (r, ϕ) = 1
2π

1−r2
1−2r cos(ϕ)+r2 . We know cos(ϕ) is an even function and

is periodic with period 2π, so ϕ 7→ P (r, ϕ) is as well. Furthermore, ϕ 7→ −2r cos(ϕ) is monotone increasing on
[0, π], and hence ϕ 7→ P (r, ϕ) is monotone decreasing on [0, π]. Similarly, ϕ 7→ P (r, ϕ) is monotone increasing
on [π, 2π] by the same reasoning, and we conclude P (r, ϕ) ≥ P (r, π) > 0 for all r > 1 and ϕ ∈ R. For the
second property, we compute∫ 2π

0

P (r, ϕ)dϕ =

∫ 2π

0

1

2π

∞∑
n=−∞

r|n|einϕdϕ

=

∞∑
n=−∞

1

2π
r|n|

∫ 2π

0

einϕdϕ

=

∞∑
n=1

1

2π
rn
∫ 2π

0

einϕdϕ+

∞∑
n=1

1

2π
rn
∫ 2π

0

e−inϕdϕ+
1

2π
r0
∫ 2π

0

e0dϕ

=

∞∑
n=1

1

2π
rn
[

einϕ

in

]2π
0

+

∞∑
n=1

1

2π
rn
[

einϕ

in

]2π
0

+
1

2π

∫ 2π

0

dϕ

=

∞∑
n=1

0 +

∞∑
n=1

0 + 1

= 1,

and we conclude
∫ 2π

0
P (r, ϕ)dϕ = 1. For the third property, we again use P (r, ϕ) = 1

2π
1−r2

1−2r cos(ϕ)+r2 and take

the limit for fixed ϕ ∈ ]0, π[ :

lim
r→1

P (r, ϕ) = lim
r→1

1

2π

1− r2

1− 2r cos(ϕ) + r2
=

1

2π

0

2− 2r cos(ϕ)
= 0,

since 2− 2r cos(ϕ) 6= 0 for ϕ ∈ ]0, π[ .
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We now have everything set up to show u uniformly converges to f as r → 1. First, observe

|u(r, θ)− f(eiθ)| =
∣∣∣∣∫ 2π

0

P (r, θ − t)f(eit)dt− f(eiθ)

∫ 2π

0

P (r, θ − t)dt
∣∣∣∣

=

∣∣∣∣∫ 2π

0

P (r, θ − t)f(eit)dt−
∫ 2π

0

P (r, θ − t)f(eiθ)dt

∣∣∣∣
=

∣∣∣∣∫ 2π

0

P (r, θ − t)
(
f(eit)− f(eiθ)

)
dt

∣∣∣∣
≤
∫ 2π

0

P (r, θ − t)
∣∣f(eit)− f(eiθ)

∣∣ dt,
where we used the second and first property of the Poisson kernel in the first and last line respectively. For
the final estimate, we are going to split the integral

I :=

∫ 2π

0

P (r, θ − t)
∣∣f(eit)− f(eiθ)

∣∣ dt
into two parts. First, note that f : S1 → C is a continuous function on a compact domain, and hence
uniformly continuous. This entails that for any ε > 0, there exists a δ > 0 such that

∣∣f(eit)− f(eiθ)
∣∣ < ε for

|t− θ| < δ. Hence, if we only consider the integral on [θ − δ, θ + δ] we can estimate

I1 :=

∫ θ+δ

θ−δ
P (r, θ − t)

∣∣f(eit)− f(eiθ)
∣∣ dt

≤
∫ θ+δ

θ−δ
P (r, θ − t)εdt

= ε

∫ θ+δ

θ−δ
P (r, θ − t)dt

≤ ε
∫ 2π

0

P (r, θ − t)dt

= ε.

In the second-last line we used the first property of the Poisson kernel being non-negative. For the second
integral, we want to integrate over D := [0, 2π]\ [θ− δ, θ+ δ] and use the fact that P (r, θ− t) has a maximum
value of P (r, δ) on [0, 2π] \ [θ − δ, θ + δ] due to the first property of the Poisson kernel:

I2 :=

∫
D

P (r, θ − t)
∣∣f(eit)− f(eiθ)

∣∣ dt
≤
∫
D

P (r, δ)
∣∣f(eit)− f(eiθ)

∣∣ dt
= P (r, δ)

∫
D

∣∣f(eit)− f(eiθ)
∣∣ dt

= P (r, δ)

∫ 2π

0

∣∣f(eit)− f(eiθ)
∣∣ dt.

The integral
∫ 2π

0

∣∣f(eit)− f(eiθ)
∣∣ dt is uniformly bounded in θ since f is bounded. Since δ ∈ ]0, π[ we can

use the third property of the Poisson kernel. This entails P (r, δ)→ 0 as r → 1, so by
∫ 2π

0

∣∣f(eit)− f(eiθ)
∣∣ dt

being bounded we conclude I2 → 0 as r → 1.

We conclude by stating

|u(r, θ)− f(eiθ)| ≤ I = I1 + I2 ≤
ε

2
+
ε

2
= ε
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for all ε > 0 if r is sufficiently close to 1, and hence that u converges to f uniformly in θ as r approaches 1.
The function u was defined as u(r, θ) =

∑
n∈Z anr

|n|einθ, so by taking r sufficiently close to 1 and summing

a sufficient finite amount of terms we obtain |f −
∑
|n|≤N anr

|n|einθ| < ε. The Laurent polynomial that

approximates f is given by l(z) =
∑
|n|≤N bneinθ where bn := anr

|n|.

This technical lemma allows us to state and prove the following proposition:

Proposition 3.2.3. Every vector bundle Ef over CP1 with clutching function f : S1 → GLn(C) is isomorphic
to a vector bundle El with Laurent polynomial clutching function l : S1 → GLn(C).

Proof. The idea is to look at the space of functions f : S1 → Ln(C), where Ln(C) is the space of linear maps
from Cn to Cn, and define a norm on this space. If we can show Laurent polynomials are dense in this
space we can consider the subspace of functions f : S1 → GLn(C) and take a straight line homotopy from a
function f to a Laurent polynomial l within this subspace. By Theorem 2.2.5 the vector bundles Ef and El
will be isomorphic.

Let C(S1, Ln(C)) denote the vector space of continuous functions f : S1 → Ln(C). We can endow this
space with a norm by defining

‖ · ‖ : C(S1, Ln(C))→ R
f 7→ sup

z∈S1

‖f(z)‖sup,

where ‖ · ‖sup is the supremum norm on Ln(C), given by A 7→ sup|v|=1 ‖Av‖. We are interested in the set

of functions C(S1, GLn(C)) ⊂ C(S1, Ln(C)). The set C(S1, GLn(C)) is open in C(S1, Ln(C)) since it is the
preimage of ]0,∞[ under the continuous map

f 7→ inf
z∈S1

|det(f(z))|.

Given a clutching function f ∈ C(S1, GLn(C)), we can view f(z) as a matrix with its entries being functions
fi,j(z) : S1 → C. By Lemma 3.2.2, we know for every entry fi,j(z) and every ε > 0 there exists a Laurent
polynomial li,j(z) such that |fi,j(z) − li,j(z)| < ε. Constructing a matrix l(z) ∈ GLn(C) with entries li,j(z)
uniformly approximating fi,j(z), we would like to show l approximates f as well. To simplify our computation,
we define the maximum norm ‖ · ‖max : A 7→ maxi,j |Ai,j | and remark ‖A‖sup ≤ n · ‖A‖max for all A ∈ Ln(C)
([HJ12], p. 365). The approximation of f by l as then shown by the following computation:

‖f − l‖ = sup
z∈S1

‖f(z)− l(z)‖sup

≤ sup
z∈S1

n · ‖f(z)− l(z)‖max

= n

(
sup
z∈S1

max
i,j
|fi,j(z)− li,j(z)|

)
= n

(
max
i,j

sup
z∈S1

|fi,j(z)− li,j(z)|
)

≤ n
(

max
i,j

ε

)
= nε,

where the interchange of supremum and maximum is justified by the maximum being a particular case of
the supremum. This shows Laurent polynomial clutching functions are dense in C(S1, GLn(C)).

Given a clutching function f , we can find an open ball B(f, ε) ⊆ C(S1, GLn(C)) of radius ε centered at
f . Because Laurent polynomial clutching functions are dense in C(S1, GLn(C)), there exists a Laurent
polynomial clutching function l ∈ B(f, ε). Since the norm defined on C(S1, Ln(C)) satisfies the triangle
inequality, we know B(f, ε) is convex, thus we can take a straight line homotopy

(1− t)f + tl ∈ B(f, ε) ⊆ C(S1, GLn(C)) for all t ∈ I.
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This shows the clutching function f is homotopic to a Laurent polynomial clutching function l, and by
Theorem 2.2.5 and Lemma 3.1.1 we conclude the vector bundles Ef and El are isomorphic.

Proposition 3.2.3 allows us to study vector bundles over CP1 through Laurent polynomial clutching functions,
which are easier to handle than general clutching functions. We will take advantage of this in the following
section.

3.3 Simplification of Laurent polynomials

Given a vector bundle p : E → CP1, we know by Proposition 3.2.3 there exists a Laurent polynomial clutching
function l such that E ∼= El. However, we can even further reduce the complexity of clutching functions, as
will be shown in Proposition 3.3.8, which will be the main goal of this subsection. To streamline the proof
of Proposition 3.3.8, we first state and prove a few lemmas.

Lemma 3.3.1. Given a matrix A, the elementary operation of adding a scalar multiple λ of a column to
another column is homotopy invariant.

Proof. Adding a scalar multiple λ of a column to another column can be realized by post-multiplication by
the matrix

M =



1
. . .

1
. . .

λ 1
. . .

1


,

where λ is in the suitable position. In the proof of Lemma 2.2.4 we have seen M is homotopic to the identity,
and we conclude that for any matrix A it holds that A ' AM .

Remark 3.3.2. Notice we did not assume anything about the field over which the matrix is given. In
particular, this means this result also applies to Laurent polynomial matrices, where the scalars are given by
Laurent polynomials.

Remark 3.3.3. The determinant of a matrix is left unchanged by adding a scalar multiple of a row or
column to another row or column, as we have seen in the proof of Lemma 2.2.4.

Remark 3.3.4. The same proof holds for adding a scalar multiple of a row to another row, simply considering
pre-multiplication by M instead of post-multiplication.

The following three results will allow us to have some control over the determinant of our Laurent polynomial
clutching functions, which will be needed to prove Proposition 3.3.8.

Lemma 3.3.5. Given a Laurent polynomial matrix l : S1 → GLn(C), det(l(z)) = λzk for some λ ∈ C and
k ∈ Z.

Proof. Consider the function l̃ defined as

l̃ : C \ {0} → C

z 7→ det

(
l

(
z

|z|

))
.

Notice l̃ is a Laurent polynomial, since l is a Laurent polynomial matrix and det(·) is a polynomial function.
Since l maps into GLn(C), l̃ has no zeros on C \ {0}, and hence l̃(z) = λzk for some λ ∈ C and k ∈ Z. Since
the function z 7→ det(l(z)) is the restriction of l̃ to S1, we conclude det(l(z)) = λzk for some λ ∈ C and
k ∈ Z.
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Corollary 3.3.6. Given an n-dimensional vector bundle p : E → CP1 there exists a Laurent polynomial
clutching function l(z) with det(l(z)) = zk for some k ∈ Z such that E ∼= El.

Proof. By the previous Lemma 3.3.5, we know there exists a Laurent polynomial clutching function l̃(z) with
det(l̃(z)) = λzk for some k ∈ Z such that E ∼= El̃. The desired clutching function l is then given by

l(z) = λ−
1
n l̃(z).

We can verify det(l(z)) = det(λ−
1
n l̃(z)) =

(
λ−

1
n

)n
det(l̃(z)) = λ−1λzk = zk. An isomorphism between El̃

and El is given by scaling each fiber with a factor of λ−
1
n , which is continuous and linear on each fiber,

hence an isomorphism by Lemma 1.2.4. The isomorphism between E and El is then given by composing the
isomorphism E ∼= El̃ with El̃

∼= El.

Lemma 3.3.7. Let A ∈ GLn(C) be a matrix of the form

A =

(
A1 0
A3 A4

)
where A1 = (a1,1) is a 1 × 1 submatrix, A3 is an (n − 1) × 1 submatrix and A4 is an n × n square matrix,
then det(A) = det(A1) · det(A4).

Proof. We want to utilize Laplace’s formula ([Lan87], p. 148), which states for any n × n square matrix B
and fixed 1 ≤ i ≤ n

det(B) =

n∑
j=1

(−1)i+jbi,jMi,j ,

where the minor Mi,j is the determinant of the (n − 1) × (n − 1) matrix obtained by deleting the i-th row
and j-th column from B. If we fix i = 1 and apply this to our matrix A, we compute

det(A) =

n∑
j=1

(−1)1+ja1,jM1,j

= (−1)1+1a1,1M1,1 +

n∑
j=2

(−1)1+ja1,jM1,j

= a1,1 det(A4) +

n∑
j=2

(−1)1+j0M1,j

= det(A1) · det(A4).

We conclude det(A) = det(A1) · det (A4).

Having set this up, we now have the necessary tools to prove the following proposition:

Proposition 3.3.8. Any n × n Laurent polynomial matrix l(z) with det(l(z)) = zk for some k ∈ Z is
homotopic to the matrix Dk

n : S1 → GLn(C) given by

Dk
n(z) :=


zk

1
. . .

1

 .

Proof. We will give a proof by induction. For the case n = 1, consider a Laurent polynomial matrix
l(z) = (l1,1(z)). By assumption det(l(z)) = l1,1(z) = zk, and hence l(z) = (zk) = Dk

1 (z) and det(Dk
1 (z)) =

det(l(z)) = zk.
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Next, assume the result holds for (n − 1) × (n − 1) matrices. Given an n × n Laurent polynomial ma-
trix l(z) = (li,j(z)) we would like to find a homotopy between l and Dk

n which preserves the determinant of l.
We will do this by composing several homotopies. We start by writing l(z) = zmp(z), where m ∈ Z is taken
such that p(z) is a polynomial matrix. A polynomial matrix is defined analogously to a Laurent polynomial
matrix, only with polynomial entries instead of Laurent polynomial entries.

Having a polynomial matrix p(z), we can apply the Euclidean algorithm C to the first row of p(z). This
algorithm only adds (polynomial) scalar multiples of one entry to another, and hence the resulting matrix
p̃(z) is homotopic to the original polynomial matrix p(z) by Lemma 3.3.1. Since adding scalar multiples of
one row to another does not change the determinant, it also holds det(p(z)) = det(p̃(z)). The Euclidean
algorithm ensures p̃1,1(z) is the greatest common divisor of the first row, and all other entries p̃1,j(z) = 0 for
j > 1. This gives a homotopy

p(z) =



p1,1(z) p1,2(z) . . . . . . p1,n(z)

p2,1(z) p2,2(z)
...

...
. . .

...
...

. . .
...

pn,1(z) . . . . . . . . . pn,n(z)


'



p̃1,1(z) 0 . . . . . . 0

p̃2,1(z) p̃2,2(z)
...

...
. . .

...
...

. . .
...

p̃n,1(z) . . . . . . . . . p̃n,n(z)


= p̃(z)

By assumption we know zk = det(l(z)) = det(zmp(z)) = znm det(p(z)), and hence det(p(z)) = zr where
r = k−nm. Since the determinant remained unchained by homotopy, we also obtain det(p̃(z)) = zr. Having
applied the Euclidean algorithm, we can write

p̃(z) =

(
p̃1(z) 0
p̃3(z) p̃4(z)

)
,

where p̃1(z) is a 1×1 submatrix, p̃3(z) is a submatrix of dimension (n−1)×1 and p̃3(z) is a (n−1)× (n−1)
submatrix. Utilizing Lemma 3.3.7 we obtain zr = det(p̃(z)) = det(p̃1(z)) · det(p̃4(z)). Since zr only factors
into other integer powers of z and p̃1(z) = p̃1,1(z), we conclude p̃1,1(z) = zr1 for some r1 ∈ Z and the
determinant of the (n − 1) × (n − 1) submatrix p̃4(z) is det(p̃4(z)) = zr2 , with r1 + r2 = r. Now we can
apply the induction hypothesis and obtain a homotopy p̃4 ' Dr2

n−1. Using this homotopy, we construct the
homotopy

p̃(z) =



p̃1,1(z) 0 . . . . . . 0

p̃2,1(z) p̃2,2(z)
...

...
. . .

...
...

. . .
...

p̃n,1(z) . . . . . . . . . p̃n,n(z)


'



zr1 0 . . . . . . 0
p̃2,1(z) zr2 0 . . . 0

... 0 1
...

...
...

. . . 0
p̃n,1(z) 0 . . . 0 1

 .

Adding
p̃2,1(z)
zr2 times the second row and p̃i,1(z) times the i-th row for 3 ≤ i ≤ n to the first we obtain a

homotopy 

zr1 0 . . . . . . 0
p̃2,1(z) zr2 0 . . . 0

... 0 1
...

...
...

. . . 0
p̃n,1(z) 0 . . . 0 1

 '


zr1 0 . . . . . . 0

0 zr2
...

... 1
...

...
. . .

...
0 . . . . . . 0 1


.

The next homotopy will be given by one similar to the one seen in Example 2.2.15, namely a homotopy p̃t
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satisfying

p̃0(z) :=



zr1 0 . . . . . . 0

0 zr2
...

... 1
...

...
. . .

...
0 . . . . . . 0 1


, p̃1(z) :=



zr1+r2 0 . . . . . . 0

0 1
...

... 1
...

...
. . .

...
0 . . . . . . 0 1


.

To achieve this homotopy we again use the path γ : I → GL2(C) from Example 2.2.15 connecting the identity

to the matrix

(
0 1
1 0

)
, and analogous to Example 2.2.15 obtain a homotopy

(
zr1 0
0 zr2

)
'
(
zr1+r2 0

0 1

)
.

Embedding this homotopy in p̃0 will yield the desired homotopy p̃t. Notice det(p̃0(z)) = det(p̃1(z)) =
zr1+r2 = zr and p̃1(z) = Dr

n(z). Reading back the proof, we find we have a homotopy

l(z) = zmp(z) ' zmDr
n(z).

As a sanity check, recall r = k−nm and zk = det(l(z)) = det(zmDr
n(z)) = znm ·zr = zk. Our final homotopy

will be given by a homotopy between

zmDr
n(z) =



zr+m 0 . . . . . . 0

0 rm
...

...
. . .

...
...

. . .
...

0 . . . . . . 0 rm


' Dk

n(z)

using a homotopy similar to p̃t. This gives us the desired homotopy between l and Dk
n and we conclude

l ' Dk
n and det(l(z)) = det(Dk

n(z)) = zk.

Together with Corollary 3.3.6, Proposition 3.3.8 implies any n-dimensional complex vector bundle p : E →
CP1 is isomorphic to a vector bundle with clutching function Dk

n, where k can be computed by considering the
Laurent polynomial clutching function corresponding with E and computing its determinant. In particular,
this yields the isomorphism E ∼= Ek ⊕ εn−1. This is because the clutching function of Ek is given by z 7→ zk

and the clutching function for εn−1 is given by Id ∈ GLn−1(C) and Dk
n = (zk)⊕ Id. From Lemma 2.2.13 and

Lemma 2.2.14 we then obtain the isomorphism E ∼= Ek ⊕ εn−1.

Example 3.3.9. Revisiting Example 2.2.15 we again examine the clutching functions of (H ⊗H)⊕E0 and
H ⊕H, given by (

z2 0
0 1

)
and

(
z 0
0 z

)
respectively. Where we previously provided an explicit homotopy, we now know it suffices to compute the
determinant of both clutching functions to determine of the vector bundles are isomorphic. Computing the
determinants we find them to be z2 in both cases, and we again conclude (H ⊗H)⊕ E0

∼= H ⊕H.

Another example is given by

Example 3.3.10. Let E be a vector bundle over CP1 with clutching function

z 7→
(
iz z−3

iz4 z2 + 1

)
.



3 CLASSIFICATION OF VECTOR BUNDLES OVER CP1 36

Classifying E would be quite difficult if we would want to find an explicit homotopy, but using Corollary
3.3.6 and Proposition 3.3.8 we know it is enough to compute the determinant:

det

(
iz z−3

iz4 z2 + 1

)
= iz(z2 + 1)− iz−3z4 = iz3 + iz − iz = iz3.

By Corollary 3.3.6 we know there exists a Laurent polynomial l such that det(l(z)) = zk for some k ∈ Z such
that E ∼= El, and by Proposition 3.3.8 l is homotopic to D3

2. By Theorem 2.2.5 we conclude E is isomorphic
to the vector bundle with clutching function D3

2.

3.4 Fundamental group of GLn(C)
So far, we have shown every n-dimensional vector bundle over CP1 is isomorphic to a vector bundle with
clutching function Dk

n, and we would like to use this to classify all vector bundles over CP1 up to isomorphism.
To do so, we first introduce an object central to algebraic topology:

Definition 3.4.1 (Fundamental group). Given a topological space X and a point x0 ∈ X, the fundamental
group of X with basepoint x0 is the set

π1(X,x0) := {γ : S1 → X | γ(1) = x0}/ 'x0
,

where 'x0 is a basepoint preserving homotopy, with the group structure given by concatenation of loops.

In words, the fundamental group of a space X with basepoint x0 is the group of loops in X starting and ending
at x0, up to basepoint preserving homotopy. We have already seen something similar, namely the set [S1, X]
where X = GLn(K) in our specific case, but the difference is that we cannot endow [S1, X] with a group
structure since not all loops in [S1, X] can be concatenated. However, in the particular case of X = GLn(C),
there does exist a bijection ϕ : π1(GLn(C), x0)→ [S1, GLn(C)], as is formalized in the following lemma:

Lemma 3.4.2. The map ϕ : π1(GLn(C), x0)→ [S1, GLn(C)] sending [γ] 7→ [γ] is a bijection.

Proof. First, let us show ϕ is well defined. Given two representatives γ0 and γ1 of the same class in
π1(GLn(C), x0), their classes are mapped to [γ0] and [γ1] in [S1, GLn(C)] respectively. The maps γ0 and γ1
are homotopic by a basepoint preserving homotopy, so in particular they are homotopic and hence they map
to the same class in [S1, GLn(C)] as well. To show injectivity, let ϕ([γ0]) = ϕ([γ1]) ∈ [S1, GLn(C)]. This
means there exists a homotopy γt between γ0 and γ1. To ensure [γ0] = [γ1] ∈ π1(GLn(C), x0), we must find
a basepoint preserving homotopy. This homotopy is given by

(z, t) 7→ x0 (γt(1))
−1
γt(z).

We verify
(z, 0) 7→ x0 (γ0(1))

−1
γ0(z) = x0x

−1
0 γ0(z) = γ0(z),

and similarly
(z, 1) 7→ x0 (γ1(1))

−1
γ1(z) = x0x

−1
0 γ1(z) = γ1(z),

since [γ0], [γ1] ∈ π1(GLn(C), x0) and hence γ0(1) = γ1(1) = x0. Finally, we must verify the homotopy is
basepoint preserving, which is the case since

(1, t) 7→ x0 (γt(1))
−1
γt(1) = x0.

For surjectivity, let [γ] ∈ [S1, GLn(C)]. Since GLn(C) is path-connected by Lemma 2.2.4, there exists a path
ν from x0 to γ(1). If we concatenate ν with γ and its reverse ν, we obtain a loop homotopic to γ, but based
at x0. The equivalence class of this loop is an element of π1(GLn(C), x0), and gets sent to [γ] under ϕ.

Lemma 3.4.2 suggests the choice of basepoint x0 ∈ GLn(C) does not matter. This is true more generally for
path-connected spaces X since given any two basepoints x0, x1 ∈ X we can find a path ν from x0 to x1 and
pre-concatenate any loop γ with ν and then post-concatenate with its reverse ν to move between basepoints.
Due to this, if our space X is path-connected, we often write π1(X) instead of π1(X,x0).
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More generally we have studied clutching functions for vector bundles over Sk, and found the bijection
[Sk−1, GLn(K)] ∼= VectnK(Sk). Similar to π1(X), the homotopy groups πk(X,x0) can be defined and there ex-
ist bijections πk(GLn(K)) ∼= [Sk, GLn(K)]. This would in turn yield bijections πk(GLn(K)) ∼= [Sk−1, GLn(K)] ∼=
VectnK(Sk).

Restricting our attention to CP1 again, we would like to fully classify all vector bundles over CP1. So
far, we have shown every isomorphism class [E] ∈ VectnC(CP1) can be identified with Dk

n, but we have yet to

show Dk
n is unique. To do so, we need to show the maps Dk

n, D
k̃
n : S1 → GLn(C) are not homotopic if k 6= k̃.

If this is the case, the representation of a vector bundle up to isomorphism by Dk
n is unique by Theorem

2.2.5.

Lemma 3.4.3. The maps Dk
n, D

k̃
n : S1 → GLn(C) are homotopic if and only if k = k̃.

Proof. If k = k̃, it follows by definition Dk
n = Dk̃

n as well, and hence Dk
n ' Dk̃

n. For the converse, let Dk
n ' Dk̃

n.
We wish to simplify our problem and to do we use that given two homotopic maps f0 ' f1 : X → Y and a
third map g : Y → Z, the compositions g ◦ f0 and g ◦ f1 our homotopic as well. If we compose Dk

n with the
determinant det(·) : GLn(C)→ C \ {0}, A 7→ det(A), we find

det(·) ◦Dk
n : S1 → C \ {0}.

Considering its homotopy class [det(Dk
n)] ∈ [S1,C \ {0}], we can use C \ {0} deformation retracts onto

S1, which means there exists a bijection [S1,C \ {0}] ∼= [S1, S1] ∼= π1(S1). From algebraic topology we
know π1(S1) ∼= Z ([Hat05], p. 29), and under this identification [det(Dk

n)] = [zk] will be mapped to k

and [det(Dk̃
n)] = [zk̃] will be mapped to k̃. Since [Dk

n] = [Dk̃
n], it follows [det(Dk

n)] = [det(Dk̃
n)] and hence

k = k̃.

We are now ready to state the final result:

Theorem 3.4.4. There exist bijections π1(GLn(C)) ∼= VectnC(CP1) ∼= Z.

Proof. Since S2 and CP1 are homeomorphic by Lemma 3.1.1, we obtain a bijection VectnC(CP1) ∼= VectnC(S2)
using Corollary 2.1.5. From Theorem 2.2.5 we obtain a bijection VectnC(S2) ∼= [S1, GLn(C)], and [S1, GLn(C)]
can be identified with π1(GLn(C)) by Corollary 3.4.2. Composing these bijections yields the bijection
π1(GLn(C)) ∼= VectnC(CP1).

In Proposition 3.3.8 we have seen any isomorphism class [E] ∈ VectnC(CP1) can be identified with a clutching
function Dk

n. By Lemma 3.4.3 this identification is unique, and we can hence classify the vector bundles
by the number k ∈ Z, giving a bijection VectnC(CP1) ∼= Z. In particular, this yields the isomorphism
E ∼= Ek ⊕ εn−1.
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Afterword

The final result Theorem 3.4.4 is a nice conclusion to what we have done so far, but there is much left to
explore. Among other things, this thesis forms a foundation for topological K-theory ([Hat03], ch. 2). Given a
compact pointed space X, we can define an equivalence relation on complex vector bundles over X by E1 ∼ E2

if there exist trivial bundles εn and εm of dimension n and m respectively such that E1⊕ εn ∼= E2⊕ εm. The
set of equivalence classes forms an abelian group with the direct sum ⊕ as group operation and the trivial
bundle ε0 as identity element. This group is called the reduced complex K-theory of X and is denoted K̃(X).

Using the tensor product ⊗, K̃(X) can be given a ring structure as well. We can explicitly compute the

group K̃(X) for some spaces using what we have found so far, namely:

Example. For the space S0 ∼= {x, y}, K̃(S0) ∼= Z. The group isomorphism is given by

f : K̃(S0)→ Z[
{x} × Ck ∪ {y} × Ck̃

]
7→ k − k̃.

Example. For S1, K̃(S1) ∼= {0}, since by Corollary 2.2.6 every complex vector bundle over S1 is trivial.

Example. For S2 ∼= CP1, K̃(S2) ∼= Z. The group isomorphism is given by

f : K̃(S2)→ Z
[Dk

n] 7→ k,

which will be an isomorphism of groups by Theorem 3.4.4.

Computing the reduced complex K-theory of S0, S1 and S2 we see a pattern emerging, namely K̃(Sn) is
isomorphic to Z if n is even and to {0} if n is odd. As it turns out, this pattern holds for all n ∈ N by the
Bott Periodicity Theorem ([Hat03], p. 54), and a part of the proof of this powerful theorem has already been
given in the proof of Proposition 3.2.3. Given a compact pointed space X, we can similarly define the reduced
real K-theory of X by taking real vector bundles instead of complex ones, yielding the group K̃O(X). The

real case of the Bott Periodicity Theorem states the values of K̃O(Sn) are given by

n mod 8 0 1 2 3 4 5 6 7

K̃O (Sn) Z Z2 Z2 0 Z 0 0 0
.

We can also define a similar equivalence relation, namely two vector bundles E1 and E2 over a compact
space X being equivalent if there exists a trivial bundle εn such that E1⊕ εn ∼= E2⊕ εn. This is called being
stably isomorphic and denoted E1

∼=s E2. The set of isomorphism classes does not form a group under the
direct sum operation since the only element with an inverse is ε0. However, this set is a monoid with respect
to the direct sum ⊕ and can be made into a group using the Grothendieck group construction ([Hat03], p.
39), taking equivalence classes of formal differences of vector bundles as elements of the group. This group is
denoted KO(X) when considering real vector bundles and K(X) when considering complex vector bundles
and can also be given a ring structure using the tensor product. A nice duality between the K-theory of a
space and reduced K-theory of that space is that as groups, there exist isomorphisms K(X) ∼= K̃(X) ⊕ Z
and KO(X) ∼= K̃O(X)⊕ Z.

Once K-theory is set up, it becomes a powerful tool. An example of this is counting the number of lin-
early independent vector fields on spheres, as Adams has done in 1961 utilizing K-theory [Ada62]. Another
example is proving Rn can only be equipped with a real division algebra structure when n = 1, 2, 4, 8, re-
sulting in the reals R, the complex numbers C, the quaternions H and the octonions O. This theorem is
known as the Hopf invariant one theorem and was proven by Adams and Atiyah in 1964 [AA66]. The proof
is comparatively easy using K-theory, and the same proof shows the only parallelizable spheres are S1, S3

and S7.
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A Urysohn’s lemma

Partitions of unity are a tool to “go from local to global”. Often times, we know a topological space has a
certain property locally or we have a local construction, and we would like to extend it to the entire space
using partitions of unity.

Definition A.1 (Partition of unity). Given a topological space X, a partition of unity is a family of contin-
uous functions {ηi}i∈I where ηi : X → [0, 1] such that for every point x ∈ X only a finite number of ηi are
non-zero and ∑

i∈I
ηi(x) = 1.

If the indexing set I is finite, we speak of a finite partition of unity. If there exists an open cover {Ui}i∈I
of X, we might want the support of every ηi to be contained in the corresponding Ui. If this is the case, we
speak of a partition of unity subordinate to {Ui}i∈I .

Given a space X and an open cover {Ui}i∈I , we would like to state conditions under which we are guaranteed
a partition of unity subordinate to {Ui}i∈I . A sufficient condition turns out to be X being compact and
Hausdorff, which we will show using a few definitions and results. Here, we will only be giving an overview of
the results needed, sometimes providing a proof sketch. More detail and full proofs can be found in ([Cra13],
ch. 5).

Definition A.2. A space X is called normal if it is Hausdorff and if for any two closed disjoint subsets
A,B ⊂ X there exist open sets U, V such that

A ⊂ U,B ⊂ V, and U ∩ V = ∅.

Being normal ensures one can separate disjoint closed subsets in X, and is an property a lot of well behaved
spaces have. The following lemma will give a sufficient condition for a space X being normal:

Lemma A.3. If a topological space X is compact and Hausdorff it is also normal.

Proof sketch. The idea is to use the fact that any closed set inside a compact Hausdorff space is again
compact. We then show that if a compact set can be separated from all points of another set, it can be
separated from the set as a whole as well. Finally, we use that X is Hausdorff to separate the sets point by
point and by the above obtain the desired result.

Being normal extends from topological spaces to spaces of continuous functions, as is made precise in the
following definition:

Definition A.4. Given a space X, we say the space of continuous functions from X to R, C(X) is normal
if for an two disjoint closed subsets A,B of X there exists a function f : X → [0, 1] such that f |A = 1 and
f |B = 0.

These two notions of normality are related by the following result:

Lemma A.5 (Urysohn’s lemma). Given a normal topological space X, the space C(X) is normal as well.

Proof sketch. The proof makes use of constructing and indexing sets using dyadic fractions. For a full proof,
see ([Cra13], p.107).

Now that we have the necessary background, we can go on to state results about partitions of unity:

Proposition A.6. Let X be a topological space and let C(X) be normal, then for any open cover {Ui}i∈I
there exists a partition of unity subordinate to {Ui}i∈I .

Proof sketch. The main topological tool is a shrinking lemma ([Cra13], p. 103), which states for any finite
open cover of X, we can find an open cover such that the closure of the opens is contained in the original open
cover. If we use the shrinking lemma twice and then using the fact that C(X) is normal, we can construct a
partition of unity.
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Finally, we state the result most used in this thesis:

Corollary A.7. Given a compact Hausdorff space X, for any open cover {Ui}i∈I of X there exists a partition
of unity subordinate to {Ui}i∈I .
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B The tensor product

The tensor product is an operation which, when applied to two vector spaces V and W , yields a new vector
space V ⊗W , the tensor product of V and W [Sta20]. To define the tensor product we first need the following
definition:

Definition B.1 (Free vector space). Given a set S and a field K, the free vector space over S, denoted F (S),
is the set of formal linear combinations

v =

n∑
i=1

λisi,

where λi ∈ K and si ∈ S, with vector addition and scalar multiplication defined as

(λ1s1 + · · ·+ λnsn) + (µ1s1 + · · ·+ µnsn) = (λ1 + µ1)s1 + · · ·+ (λn + µn)s1

µ(λ1s1 + · · ·+ λnsn) = µλ1s1 + · · ·+ µλnsn.

In summary, the free vector space over S is the vector space obtained by taking all elements of S as basis
elements. Having this, we state the definition of the tensor product.

Definition B.2 (Tensor product). Given vector spaces V and W over field K, the tensor product of V and
W is given by

V ⊗W := F (V ×W )/ ∼,

where ∼ is the equivalence relation generated by

(v, w) ∼ (v, w)

(v, w) ∼ (v′, w′) ⇐⇒ (v′, w′) ∼ (v, w)

(v, w) ∼ (v′, w′), (v′, w′) ∼ (v′′, w′′) =⇒ (v, w) ∼ (v′, w′)

(v, w) + (v′, w) ∼ (v + v′, w)

λ(v, w) ∼ (λv,w), λ(v, w) ∼ (v, λw),

and the equivalence class of (v, w) is denoted v ⊗ w.

In summary, we take the free vector space F (V ×W ) and identify vectors with each other in an intuitive way.
The first three relations are to ensure ∼ is indeed an equivalence relation, the last two are for arithmetic. To
perform arithmetic within the tensor product choose representative elements of the equivalence class, perform
the arithmetic in the usual way and then take the equivalence class of the result.

If we have bases {vi} of V and {wj} of W , a basis for V ⊗ W is given by {vi ⊗ wj}. This also shows
the dimension dim(V ⊗W ) = dim(V ) · dim(W ), and hence ensures the tensor product is distinct from the
direct sum. One of the most important properties of V ⊗W is the universal property:

Lemma B.3. Consider the map ϕ : V ×W → V ⊗W, (v, w) 7→ v ⊗ w, then given a vector space X and a
bilinear map f : V ×W → X there exists a unique bilinear map f̃ : V ⊗W → X such that f = f̃ ◦ ϕ.

This can be summarized in the following commutative diagram:

V ×W V ⊗W

X

ϕ

f ∃!f̃ .

What this means is that for any bilinear map f : V ×W → X there is no loss of information if we consider
it as a map f̃ : V ⊗W → X. This universal property simplifies proving properties about the tensor product,
such as the tensor product being symmetric, associative, commutative and distributive with respect to the
direct sum [Sta20].
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C The Euclidean algorithm

The Euclidean algorithm is an algorithm for finding the greatest common divisor, GCD for short, of two
polynomials ([Mor03], §1.2). Let a(x) and b(x) be two polynomials and without loss of generality as-
sume deg(a(x)) ≤ deg(b(x)). Using polynomial long division, we can find polynomials q0(x) and r0(x)
with deg(r0(x)) < deg(b(x)) such that

a(x) = q0(x)b(x) + r0(x).

Notice a polynomial p(x) divides a(x) and b(x) if and only if it divides b(x) and r0(x), and hence gcd(a(x), b(x)) =
gcd (b(x), r0(x)). We now set

a1(x) = b(x), b1(x) = r0(x)

and repeat the polynomial long division to obtain new polynomials q1(x), r1(x), a2(x), b2(x). Repeating this,
we notice at every step

deg (ak+1) + deg (bk+1) < deg (ak) + deg (bk) ,

and eventually deg bN (x) = 0 for some N ∈ N. This implies

gcd(a, b) = gcd (a1, b1) = · · · = gcd (aN , 0) = aN .

This algorithm can be extended to find the greatest common divisor of any finite number of polynomials by
using the property that for any set of polynomials {p1(x), . . . pn(x)} it holds that

gcd (p1(x), p2(x), . . . , pn(x)) = gcd (gcd (p1(x), p2(x), . . . , pn−1(x)) , pn(x)) .

Our last remark is that an(x) − qn(x)bn(x) = rn(x) = bn+1(x), or in other words that bn+1(x) can be
computed by subtracting a polynomial multiple of bn(x) from an(x), which is of importance when we apply
the Euclidean algorithm in this thesis.
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D The Gram–Schmidt process

The Gram–Schmidt process is way of generating a set of n orthonormal vectors from a set of n linearly
independent vectors ([Lan87], p. 104). Let V be a vector space endowed with an inner product and let
{v1, . . . vn} be a set of n linearly independent vectors. We inductively generate a set of orthogonal vectors
{w1, . . . wn} by defining

w1 = v1,

wk = vk −
k−1∑
i=1

〈v, wi〉
〈wi, wi〉

wi.

Intuitively, we are splitting the vector into all its components in terms of previously defined vectors, and
removing all these components. What we are left with is a vector orthogonal to all previously defined
vectors. The final step is to normalize {w1, . . . wn} by defining

ek =
wk
‖wk‖

.

The set {e1, . . . en} will be orthonormal, and has the property

< v1, . . . vn >=< e1, . . . en > .

Note the entire Gram–Schmidt process is continuous, since it only consists of a composition of continuous
functions.

Lastly, we would like to note the Gram–Schmidt process provides a deformation retraction of GL+
n (R) onto

SO(n). Given an invertible matrix with positive determinant A ∈ GL+
n (R), its columns span the entire space

Rn. Writing A in terms of it columns

A =

 | | |
v1 v2 . . . vn
| | |

 ,

we obtain a set of n independent vectors {v1, . . . vn}. The Gram-Schmidt process provides a way to construct
an orthonormal set of vectors {e1, . . . , en} from these column vectors. Note v1 = 〈e1, v1〉e1, v2 = 〈e1, v2〉e1 +
〈e2, v2〉e2 and in general

vk =

k∑
i=1

〈ei, vk〉ei.

If we let

Q :=

 | | |
e1 e2 . . . en
| | |

 , R :=


〈e1, v1〉 〈e1, v2〉 〈e1, v3〉 . . .

0 〈e2, v2〉 〈e2, v3〉 . . .
0 0 〈e3, v3〉 . . .
...

...
...

. . .

 ,

then we can write A = QR with Q ∈ SO(n) being an orthogonal matrix and R ∈ GL+
n (R) being an upper

triangular matrix with all entries on the diagonal being positive. This decomposition is also known as the
QR decomposition ([Lan87], p. 284). Any matrix A ∈ GL+

n (R) can be decomposed in this matter, and a
deformation retraction F : GL+

n (R)× I → GL+
n (R) onto SO(n) is then given by

F (A, t) = F (QR, t) = Q


t+ (1− t) 〈e1, v1〉 (1− t) 〈e1, v2〉 (1− t) 〈e1, v3〉 . . .

0 t+ (1− t) 〈e2, v2〉 (1− t) 〈e2, v3〉 . . .
0 0 t+ (1− t) 〈e3, v3〉 . . .
...

...
...

. . .

 .

We check that indeed
F (A, 1) = F (QR, 1) = Q Id = Q ∈ SO(n),

and conclude F is a deformation retraction of GL+
n (R) onto SO(n).
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